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Abstract

Probability forecasts play an important role in many decision and risk analysis

applications. Research and practice over the years have shown that the shift

towards distributional forecasts provides a more accurate and appropriate means

of capturing risk in models for these applications. This means that mathemati-

cal tools for analyzing the quality of these forecasts, may it come from experts,

models or data, become important to the decision maker. In this regard, strictly

proper scoring rules have been widely studied because of their ability to encour-

age assessors to provide truthful reports. This dissertation contributes to the

scoring rule literature in two main areas of assessment - probability forecasts

and quantile assessments.

In the area of probability assessment, scoring rules typically studied in the

literature, and commonly used in practice, evaluate probability assessments rel-

ative to a default uniform measure. In many applications, the uniform baseline

used to represent some notion of ignorance is inappropriate. In this dissertation,

we generalize the power and pseudospherical family of scoring rules, two large

parametric families of commonly-used scoring rules, by incorporating the notion

of a non-uniform baseline distribution for both the discrete and continuous cases.

With an appropriate normalization and choice of parameters, we show that these

new families of scoring rules relate to various well-known divergence measures

from information theory and to well-founded decision models when framed in an

expected utility maximization context.

In applications where the probability space considered has an ordinal ranking

between states, an important property often considered is sensitivity to distance.

Scoring rules with this property provide higher scores to assessments that allo-

cate higher probability mass to events “closer” to that which occurs based on
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some notion of distance. In this setting, we provide an approach that allows us to

generate new sensitive to distance strictly proper scoring rules from well-known

strictly proper binary scoring rules. Through the use of the weighted scoring

rules, we also show that these new scores can incorporate a specified baseline

distribution, in addition to being strictly proper and sensitive to distance.

In the inverse problem of quantile assessment, scoring rules have not yet been

well-studied and well-developed. We examine the differences between scoring

rules for probability and quantile assessments, and demonstrate why the tools

that have been developed for probability assessments no longer encourage truth-

ful reporting when used for quantile assessments. In addition, we shed light on

new properties and characterizations for some of these rules that could guide

decision makers trying to choosing an appropriate scoring rule.
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Chapter 1

Introduction

Mathematical models of uncertainty abound in many areas of research from the tradi-

tional fields of business such as finance, operations and marketing to the natural and

social sciences. In all of these areas, a decision maker often needs to quantify certain

relevant uncertainties through the use of probabilities. In many cases, decision makers

do this either by expressing their own beliefs or by eliciting probabilities from experts

whom they feel have better information.

When little care is given to this assessment procedure, poor probability judgments

often lead the decision maker to the wrong conclusions. Research in the fields of de-

cision and risk analysis has sought to characterize good probability assessments and

develop methods one could use to elicit and evaluate these judgments from experts.

Scoring rules have been developed for this purpose.

Scoring rules are functions that assign a ‘reward’ for a probability assessment given

an outcome of an uncertain event. From an ex post point of view, scoring rules are

useful because they can provide a means by which assessors can be evaluated with

respect to their predictive abilities. Also, with an appropriate choice of scoring rule,

decision makers can generate payment schemes ex ante such that probability assessors

would have the incentive to truthfully report their beliefs. In these contexts, scoring

rules have been useful tools in the areas of probability elicitation and verification.

This dissertation looks at the issues of probability elicitation and verification by

suggesting new families of rules with useful properties. In particular, we focus on the

two main types of elicitation used in practice - probability forecasts and quantile as-

sessments.

In the area of probability assessment, we investigate the notion of generating fam-

ilies of scoring rules with the ability to incorporate a specified baseline distribution

that could be used as a reference point to measure the quality of information provided
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by an assessor. Scoring rules typically studied in the literature and commonly used

in practice evaluate probability assessments relative to a default uniform distribution.

However, in many applications, the uniform baseline used to represent some notion of

ignorance is often inappropriate. As an alternative, we suggest the use of weighted

versions of the power and pseudospherical families of scoring rules, which are two large

classes of scoring rules that can incorporate a non-uniform baseline distribution.

We also show that these new parametric families of scoring rules are connected to

well-known information measures. In particular, the expected scores for these rules

correspond to two well-known parametric families of generalized divergence functions

in the information theory literature. In addition, we show that these scoring rules are

related to some generic expected utility optimization models that provide a decision-

theoretic connection between these new rules and the notion of information value in

an economic setting.

In many applications, the probability space considered may have an ordinal ranking

between states. In these settings, an important property often considered is sensitivity

to distance. Scoring rules with this property provide higher scores to assessments that

allocate higher probability mass to events “closer” to that which occurs based on some

notion of distance. In this setting, we provide an approach that allows us to generate

new sensitive to distance strictly proper scoring rules from well-known strictly proper

binary scoring rules. Through the use of the weighted scoring rules, we also show that

these new scores can incorporate a specified baseline distribution, in addition to being

strictly proper and sensitive to distance. We illustrate this in detail using the weighted

power and pseudospherical scoring rules we have developed earlier.

Aside from probability elicitation, another common method of eliciting probabilistic

forecasts is to ask experts to provide quantile assessments for an unknown distribution.

For example, it is common in decision and risk analysis to assess the 0.10, 0.50 and

0.90, or the 0.05, 0.50 and 0.95 quantiles of a distribution. We then ask how forecast

evaluation tools can be applied to this area. The notion of scoring rules has been

hardly studied in the area of quantile assessment. We begin by examining the differ-

2
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ences between scoring rules for probability and quantile assessments, and demonstrate

why the tools that have been developed for probability assessments no longer apply.

We then shed light on new properties and characterizations for some of the new scoring

rules for quantiles that could later guide decision makers in choosing an appropriate

scoring rule to use.

This dissertation proposal proceeds in the following manner. Chapter 2 describes

basic definitions and concepts that are used in this dissertation. Chapter 3 discusses

the motivation and development behind the new families of scoring rules. Next, con-

nections to information theory and utility maximization are presented. Chapter 4

describes an extension to accommodate for the notion of sensitivity to distance in

ordered spaces. Chapter 5 discusses the distinction between the scoring rules under

probability assessment and under quantile assessment, and develops new families of

rules suited for quantile assessment. Properties of these scoring rules and some of their

generalizations are then highlighted. Chapter 6 summarizes.

3
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Chapter 2

Foundations

In this chapter, we introduce the basic definitions, properties and concepts that we

will be using throughout this dissertation. In particular, we discuss two main topics

- scoring rules and information measures. For those interested in reading further,

more comprehensive reviews of scoring rules are provided by Winkler (1996), and

Gneiting and Raftery (2007), while Verdu & McLaughlin (1999) is a good reference

for information measures.

2.1 Scoring Rules

2.1.1 Definition and Set-Up

Suppose that we want to make probability statements about a random variable X

defined on some measurable space (Ω,F ), where Ω is the sample space and F the

σ-field of Borel subsets B of Ω. If we let P be a convex class of probability measures

on the space (Ω,F ) then any probability measure belonging to P is a probability

assessment about X. In this dissertation, we only consider probability distributions P

that are absolutely continuous with respect to a σ-finite measure µ on the measurable

space (Ω,F ). Moreover, we only consider two cases: (i) µ is the Lebesgue measure

and (ii) µ is a counting measure. This implies that the Radon-Nikodym derivative of

the distribution P with respect to µ can be written in the following manner (assuming

it exists)

dP

dµ
=





p(x) if µ is the Lebesgue measure

P(X = x) = px if µ is a counting measure
(2.1)

for x ∈ supp(X), the support of X. We refer to the Radon-Nikodym derivative as

the probability density function when µ is the Lebesgue measure and the probability

4
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mass function when µ is the counting measure. This covers most useful and commonly

encountered applications in practice where typically the focus is on Borel subsets of Rn

and the elicited distributions are expressed as either discrete or continuous probability

distributions.

Given this set-up, we can now formally define a scoring rule.

Definition 1. An extended real-valued function S : P × Ω → R̄ is a scoring rule if

for all P ∈P,

(i) S(P, ·) is measurable (with respect to F ), and

(ii) S(P, ·) is quasi-integrable, i.e.
∫
S+(P, ω)dP (ω) :=

∫
[S(P, ω)∨ 0]dP (ω) <∞ or

∫
S−(P, ω)dP (ω) := − ∫ [S(P, ω) ∧ 0]dP (ω) <∞.

In addition, we consider the following regularity condition similar to Gneiting and

Raftery (2007): for all P,Q ∈ P, EQS(P ) ∈ R except possibly that S(P,Q) = −∞
if P 6= Q. This is a technical requirement which will later play a role when we try to

characterize rules which encourage truthful reporting.

Under this scheme, if x = X(ω) materializes then the score assigned to a forecast

P is given by S(P, ω). In an ex post sense, the score received by the assessor can be

used to monitor her performance over a series of assessments. Here, we say that the

scoring rule is useful in the context of forecast verification.

From an ex ante perspective, scoring rules can also be useful. Prior to the ob-

servance of ω, an analysis based on expectations is possible. More specifically, these

scores could be used to generate a reward scheme such that the assessor who wants to

maximize her expected score would report truthfully.

If P represents the assessor’s belief about the random variable X and she chooses

5
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to report R, then his expected score is given by

EPS(R) = S(R,P )

=
∫

Ω

dP

dµ
(ω)S(R,ω)dµ(ω)

=





∫

Ω
p(ω)S(r(ω), ω)dω if µ is the Lebesgue measure

∑

Ω

pωS(r(ω), ω) if µ is a counting measure
.

We slightly abuse notation by using dω instead of dµ(ω) when there is no confusion

about the setting where are in.

As an illustration, consider the state space Ω = {0, 1} with two possible outcomes

and the set P = ∆2 = {(p, 1− p) : p ∈ [0, 1]}. Next, let the quadratic score be defined

as the function which assigns the following score to an assessment r = (r, 1−r) if event

1 happens:

S(r, 1) = 2r − r2 − (1− r)2 (2.2)

and

S(r, 0) = 2(1− r)− r2 − (1− r)2 (2.3)

if the other event happens. For simplicity, we denote the actual score for a discrete case

as is conventionally done in the literature as Sj(r) given that event j occurs. Hence,

under this scheme, if a probability assessment of (0.7, 0.3) is provided and event 1

happens, then the assessor receives a score of 0.82 if state 1 happens but only 0.02 if

other state occurs. Note that to get the highest possible score of one, the assessor has

to provide an assessment of 1 for the event that occurs. This represents a categorical

forecast. Unfortunately, if a categorical forecast is given to an event that does not

occur then the assessor would get the lowest possible score, −1.

If the assessor’s true belief is p then her expected score is given by

EpS(r) = pS1(r) + (1− p)S2(r)

= 1 + (1− 2r)(1− 2p)− r2 − (1− r)2.

To maximize this expected score among all assessments r ∈ P, r has to be exactly

p. This implies that a person wanting to maximize this expected score should report

6
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truthfully. Note that not all scoring rules satisfy this property. If the linear rule

S1(r) = S2(1− r) = r (2.4)

is used, then the expected score is maximized by providing a categorical forecast to

the event with higher probability.

On the other hand, if Ω = R then the quadratic score changes as follows: if x is the

realization of X and a probability density r is reported, then the score for reporting r

would be

S(R, x) = 2r(x)−
∫ ∞
−∞

r(y)2dy. (2.5)

while the expected score is

EPS(R) =
∫ ∞
−∞

2p(x)r(x)dx−
∫ ∞
−∞

r(y)2dy. (2.6)

The integral in (2.5) is the natural extension of the sum of squares for the probabilities

of each state in the discrete case.

2.1.2 Some Well-Known Examples of Scoring Rules

Numerous scoring rules have been proposed in the literature. Here, we describe some of

the most commonly used and well-studied rules. We provide some background and ref-

erences but will defer discussing specific properties of these rules until the next section.

Quadratic Scoring Rule. The first scoring rule introduced in literature is the

quadratic scoring rule, also known as the Brier score, named after G. W. Brier (1950)

who suggested it in the context of weather forecasting. His score was similar to the

forms (2.2) and (2.3), with the exception that the orientation was negative, i.e. lower

scores imply a better performance. This perhaps comes from the long tradition of

using least squares in many statistical applications.

Later on, de Finetti (1962) provided the generalization to the general n-state dis-

crete case. In this form, the score when event j happens is given by

Sj(r) = 2rj −
n∑

k=1

r2
k. (2.7)

7
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The continuous version of this rule (and many others) was introduced by Matheson

and Winkler (1976) and is exactly the same form given in (2.5). We note that the

expected score when the true belief is reported is
∫

Ω p(ω)2dω. The quadratic rule is

the most commonly used scoring rule.

Logarithmic Scoring Rule. Another score introduced early in the literature is the

logarithmic scoring rule. Good (1952) suggested this score in the context of betting.

In the discrete case, this score has the form

Sj(r) = log rj , (2.8)

while in the continuous setting,

S(R,ω) = log r(ω). (2.9)

An interesting property of this rule is that the expected score under truth-telling is

related to a popular measure from information theory. In particular, it is the negative

of Shannon’s entropy:

EPS(P ) =
∫
p(ω) log p(ω)dω. (2.10)

Spherical Scoring Rule. This rule was first introduced by Roby (1965) in the context

of psychological testing, where respondents had to provide probability assessments for

events described in an experiment. When the state space is discrete, this scoring rule

has the form

Sj(r) =
rj
||r||2 , (2.11)

where ||r||k is the k-norm given by

||r||k =
( n∑

j=1

rkj

)1/k
.

Analogously, the continuous version of this rule is given by

S(R,ω) =
r(ω)

(∫

Ω
r(ω)2dω

)1/2
. (2.12)

8
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We can denote the integral in the denominator as ||R||2. The expected score for truthful

reporting, ERS(R) = ||R||2, is the square root of the expected score for the quadratic

scoring rule.

Pseudospherical Scoring Rule. One of the first parametric generalizations for a

scoring rule was provided in a short comment by Good (1971). He suggested a measure

that contains two well-known scoring rules and has a strong connection to a statistical

measure for surprise used in inferential experiments. The scoring rule, which Good

called pseudospherical, is given by:

S(R,ω) =





1
β − 1

[( rω
||r||β−1

)β
− 1
]

if µ is a counting measure

1
β − 1

[( R(ω)
||R||β−1

)β
− 1
]

if µ is the Lebesgue measure

(2.13)

for β ∈ R. When β = 2, the score is equivalent to the spherical rule. In the limit as

β → 1, this scoring rule converges to the logarithmic rule.

Power Scoring Rule. Similar to the pseudospherical scoring rule, a generalization of

the quadratic rule exists. Selten (1998) introduced the power family of scoring rules,

which has the form

S(R,ω) =





βrβ−1
ω − 1− (β − 1)||r||ββ

β(β − 1)
if µ is a counting measure

βr(ω)β−1 − 1− (β − 1)||R||ββ
β(β − 1)

if µ is the Lebesgue measure

(2.14)

for β ∈ R. When β = 2, we get the quadratic rule, and as β → 1, we get the logarithmic

rule. Selten’s original proposed score is not in the same form as (2.14), which uses the

normalization suggested in Jose, Nau & Winkler (2008) since this has nice properties

for all β.

9
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2.1.3 Properties

Given the wide array of possible scoring rules, many authors have investigated a col-

lection of properties which could be desirable in different decision contexts. Knowledge

of these properties could be used in the selection of an appropriate scoring rule. We

introduce some of these properties and discuss their implications in practice.

Strict Propriety. The most commonly studied property of scoring rules is strict

propriety. Though the notion was first coined by Winkler and Murphy (1968), the

idea was already present in the earlier works of Brier (1950), Good (1952) and de

Finetti (1962).

Definition 2. A scoring rule is proper (relative to P) if

EPS(P ) ≥ EPS(R) (2.15)

for all P,R ∈ P. It is said to be strictly proper if the equality in (2.15) holds only

when P = R.

The implication of this definition is that ex ante assessors who would like to maxi-

mize their expected score have to report truthfully. From the standpoint of economics

and game theory, this principle is equivalent to the interim incentive compatibility con-

dition in mechanism design, which encourages agents to truthfully report their beliefs.

This is perhaps why among all properties, this is the only one which almost all studies

consider desirable. Note that not all rules satisfy this property. As discussed earlier,

linear rule is not strictly proper and encourages the reporting of extreme probabilities.

All the scoring rules presented in Section 2.1.2 are strictly proper. In addition,

positive affine transformations of strictly proper scoring rules are also strictly proper,

i.e.

Remark 1. If S(R,ω) is (strictly) proper with respect to P then so is Š := aS(R,ω)+b

for a ∈ R+ and b ∈ R. [Winkler & Murphy 1968, Gneiting & Raftery 2007]

10
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Affine transformations however are not the only way to generate new scores. We can

generate infinitely many scoring rules by taking strictly convex functions and applying

a result by Hendrickson and Buehler (1971), which generalizes an earlier result of

McCarthy (1956) and Savage (1971). To state this result, we first briefly recall the

notion of a subtangent from convex analysis.

Definition 3. A function G∗(P, ·) : Ω → R̄ is a subtangent of G at P ∈ P if the

following are satisfied:

(i) G∗ is integrable with respect to P

(ii) G∗ is quasi-integrable with respect to all R ∈P, and

(iii) [Subtangent Inequality] For all R ∈P,

G(R) ≥ G(P ) +
∫
G∗(P, ω)d(R− P )(ω). (2.16)

In the discrete case, the notion of a subtangent G∗ is simply that of the familiar

subgradient G′ with (2.16) being equivalent to

G(R) ≥ G(P ) + 〈G′(P ), R− P 〉, (2.17)

where 〈·, ·〉 is the standard scalar product operator. Using this notion, we have the

following theorem:

Remark 2 (McCarthy-Savage-Hendrickson-Buehler Characterization Theorem). A

scoring rule S is (strictly) proper relative to a class P if and only if there exists a

(strictly) convex function G on P such that

S(P, ω) = G(P )−
∫
G∗(P, ω)dP (ω) +G∗(P, ω) (2.18)

for P ∈ P, where G∗(P, ·) : Ω → R̄ is a subtangent of G at P ∈ P. If Ω is finite,

(2.18) is equivalent to

Si(p) = G(p)− 〈G′(p),p〉+G′i(p) (2.19)

11
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for every i ∈ Ω = {1, . . . , n} and p ∈P with G being a (strictly) convex function and

G′(p) a subgradient of G at p. [McCarthy 1956, Savage 1971, Hendrickson & Buehler

1971]

This theorem is equivalent to McCarthy’s (1956) original result which states that

(strict) propriety is equivalent to requiring that the expected score EPS(P ) is (strictly)

convex with S(P, ω) being a subtangent of EPS(P ) at P for all measures in the space

P. Thus, given any convex function, we can use (2.18) to generate a strictly proper

scoring rule. For example, when Ω is discrete and G(p) = ||p||2, (2.18) generates the

spherical scoring rule. The reason that we obtain the spherical scoring rule is that it

turns out that under this constructive theorem G(P ) is simply EPS(P ).

As an illustration, consider the case where the state space has only two elements.

Equation (2.19) can be expressed as

S1(p) = G(p) + (1− p)G′(p) (2.20)

S2(p) = G(p)− pG′(p). (2.21)

This is commonly referred to as the Schervish representation (Dawid 1986, Schervish

1989) for binary strictly proper scoring rules. Figure 2.1 provides a graphical illustra-

tion for the spherical rule when n = 2. Given a report r = (0.6, 0.4), the score when

states 1 (state 2) occurs is the point at which the tangent line to G at p = 0.6 inter-

sects the lines p = 0 (p = 1). The expected score under truth-telling is the functional

value evaluated at the report, while the expected score of report r under some other

distribution p̂ = (p̂, 1− p̂) is the point where the tangent line intersects the line p = p̂.

Symmetry. In cases where the ordering of state space does not matter, one property

that has been considered by many authors is symmetry.

Definition 4. Let Ω be discrete and r, ϑ(r) ∈ P such that the elements of ϑ(r) are

mapped from the elements of r under the permutation operator ϑ. A scoring rule is

symmetric if for all ω ∈ Ω,

Sω(r) = Sϑ(ω)(ϑ(r)). (2.22)

12
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son-Buehler characterization theorem
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When n = 2, (2.22) is equivalent to S1(r, 1− r) = S2(1− r, r). This property has

been hardly mentioned in the continuous setting but we can extend this by saying that

a continuous scoring rule is symmetric if the definition above holds for any countable

subset of Ω.

Most scoring rules present in the literature, including all those mentioned in Section

2.1.2 are symmetric, but there are a few notable exceptions. One of them is Winkler’s

(1994) asymmetric score S̆(r, ω) for the binary case (generated by a symmetric scoring

rule S). Consider a symmetric scoring rule for binary events and a baseline parameter

q, then

S̆1(r, 1− r||q, 1− q) =
S1(r, 1− r)− S1(r, 1− r)

T (q, r)

S̆2(r, 1− r||q, 1− q) =
S2(r, 1− r)− S2(q, 1− q)

T (q, r)

(2.23)

is a strictly proper scoring rule, where

T (q, r) =





S2(0, 1)− S2(c, 1− c) if p < q

S1(1, 0)− S1(c, 1− c) if p ≥ q
.

The implication of the symmetry property is that the ordering of events does not

matter and labeling of events could interchangeably be done. This is why some have

also referred to this property as order invariance (e.g. Jose 2008).

Locality. One key observation in the computation of many scoring rules is that the

score is dependent on the assessments provided for all states, including the states which

did not occur. For example, note that the quadratic score is dependent on the term

||r||22, which may vary depending on the number of states and the manner by which

probabilities are assigned to the events that did not occur.

The logarithmic score however is not affected by this issue in the sense that the

only input necessary to compute the score is the assessment made for the observed

outcome ω. This property is referred to as locality.

Definition 5. A scoring rule satisfies the locality property if ∃f such that for all ω,

S(R,ω) = f(r(ω)).

14
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The main implication of locality is that the score is solely dependent on the assess-

ment made for the event that occurs. This makes local scoring rules consistent with

the likelihood principle, which states that the information critical to an observed event

is fully contained solely in the likelihood of that event, while probabilities for events

that did not transpire should be treated as irrelevant.

When n = 2 all strictly proper scoring rules are local since the assessment on the

second state is fixed upon the choice of the first due to coherence, i.e.
∫

Ω p(ω)dµ(ω) = 1.

When n ≥ 3, this is no longer true.

Remark 3. For any Ω, the only strictly proper scoring rule that satisfies locality is

the logarithmic scoring rule. [Shuford, Albert & Massengill 1966]

This characterization implies that if you want a rule to be strictly proper and local,

then it has to be the logarithmic rule.

Effectiveness. The notion of effectiveness of scoring rules was first introduced by

Friedman (1983).

Definition 6. Given a metric (or distance function) ρ measurable with respect to P,

we say that a scoring rule is effective with respect to this metric if for every P,Q,R ∈
P,

EPS(Q) > EPS(R) ⇔ ρ(P,Q) < ρ(P,R). (2.24)

Moreover, if there exists a scoring rule S where (2.24) holds then we say that

the metric satisfying (2.24) is co-effective with respect to S. The desired result of

this property is to guarantee that the expected score is a decreasing function of the

distance between the reported distribution and the belief of the assessor under some

metric, hence imposing a monotonicity condition on the expected score.

An example of an effective scoring rule is the spherical rule given by (2.11) which

satisfies (2.24), under the re-normalized L2 metric given by

ρ(P,R) =

∣∣∣∣∣

∣∣∣∣∣
p(ω)
||P ||2 −

r(ω)
||R||2

∣∣∣∣∣

∣∣∣∣∣.
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Not all scoring rules are effective. For example, the logarithmic scoring rule is not

effective with respect to any metric. Though some authors have suggested the theo-

retical desirability of effectiveness, Nau (1985) showed that most metrics do not have

an associated co-effective scoring rule and that an implication of effectiveness is tran-

sitivity, which has been difficult to defend behaviorally.

Properties of the Loss Function. We can fully characterize a scoring rule by its

expected score under truthful reporting using (2.18). Instead of expected scores, we

can alternatively talk about the scoring rule in terms of the expected loss that one

could get by not truthfully reporting probabilities. The expected loss in score from

reporting R given the belief P is

L(R,P ) = S(P, P )− S(R,P ) = EPS(P )− EPS(R). (2.25)

Since S is strictly proper, then L(R,P ) = 0 if and only if P = R, implying that the

maximization of one’s expected score yields the same result as the minimization of

one’s expected loss.

Using this notation, conditions on the expected loss yield new properties that may

be of interest in practice. One of these properties is the notion of neutrality.

Definition 7. A scoring rule satisfies the neutrality property if for any P,R ∈P,R,

the expected loss of P given R is equal to the expected loss of R given P , i.e. L(P,R) =

L(R,P ).

Savage (1971) points out that the neutrality property can be replaced by the condition

that there exists a function H such that L(P,R) = H(P (ω) − R(ω)), which implies

that the differences between the assessor’s beliefs and her reported probabilities are

sufficient statistics for the expected loss. The imposition of the neutrality condition is

pretty strong in the sense that it restricts the possible class of scoring rules to a single

family.

Remark 4. A scoring rule S satisfies symmetry, strict propriety and neutrality if and
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only if it is a positive affine transformation of the quadratic scoring rule. [Savage 1971,

Selten 1998]

Selten (1998) defends this property by saying that

It is only fair to require that this [loss function] is ‘neutral’ in the sense

that it treats both theories equally. If p is wrong and q is right then p

should be considered to be as far from the truth as q in the opposite case

that q is wrong and p is right.

A scoring rule should not be prejudiced in favor of one of both theories

in contest between p and q... Therefore, the neutrality axiom is a natural

requirement to be imposed on a reasonable scoring rule. (Selten 1998, p.

54)

In some cases, such an argument might hold. But sometimes the treatment of the two

theories may not be equal. Consider the case where there are 3 possible outcomes and

an assessor has two assessments in mind, namely, (1, 0, 0) and (1/3, 1/3, 1/3). It seems

plausible that for some instances a greater loss should be given to one compared to

the other depending on what he knows. Knowing that event 1 is going to occur and

choosing to report an ‘ignorant’ assessment is very different than having an ‘ignorant’

prior and choosing to provide the categorical forecast. The argument that the two

losses should be equal in the two cases is not compelling.

Jose (2009) introduced the notion of proportionality, which leads to some interest-

ing geometric properties.

Definition 8. A scoring rule satisfies the proportionality property if for any P 6= R ∈
P,R, the relationship between the expected loss of P given R and the expected loss of

R given P satisfies:

L(P,R)
L(R,P )

=
ERS(R)
EPS(P )

.

This property leads to the spherical scoring rule.
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Remark 5. A scoring rule S satisfies symmetry, strict propriety and proportionality

if and only if it is a positive affine transformation of the spherical scoring rule. [Jose

2008]

This proportionality axiom provides an alternative representation of (expected) losses

in the sense that the loss one incurs is dependent on the quality of information one

has. Choosing to lie when one has “precise or valuable information” incurs a greater

expected loss compared to when one has “less precise information”.

The neutrality and proportionality axioms are closely related, differing only in

terms of a constant determined by the assessments p and r. If ||p||2 = ||r||2 then the

proportionality axiom becomes equivalent to the neutrality axiom. But for the spher-

ical rule, this could only happen when the two predictions are equally sharp, meaning

that the two theories generate the same expected gain when the assessor decides to

report truthfully. This reinforces the idea that under the spherical rule expected losses

are only equal in relative terms.

Decomposability. In probability assessments, many decision makers often consider

several notions of goodness. For instance, a decision maker may want his assessor

to provide a sharp forecast in the sense that it provides larger probabilities to some

events. On the other hand, some may want to see the probabilities assigned to match

in relative frequency with the actual observations.

This latter property is referred to as calibration or reliability, which relates to “the

degree to which an appraiser’s probabilities correspond in a relative frequency sense

to what eventually occurs.” (Winkler 1986) In an ex post sense, if an assessor asked

to provide probabilities for the event that the Dow Jones Industrial Average will close

lower than its opening value provides a forecast of 0.20 for twenty different days in a

month, perfect or good calibration suggests that the Dow Jones average should have

closed lower than its opening value approximately 4 days (20% of those 20 days) in

that set.

To one extent, calibration may not seem to be an unreasonable expectation. As
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Dawid (1982) notes, a coherent Bayesian assessor should expect to be well-calibrated.

Using scoring rules, we can study the notion of calibration. Recalling (2.25), we have

EPS(R) = EPS(P ) + L(R,P ).

If we set F ∈ P to be the unknown distribution for the random variable X, then we

have

EF [EPS(R)] = EF [EPS(P )] + EFL(R,P )

=
∫

Ω
EPS(P )dF (ω) +

∫

Ω
L(R,P )dF (ω).

For example, if we use the quadratic scoring rule S for a repeated experiment, then

the average score measured by EFEPS is given by

EF [EPS] = −
∫

Ω
P (ω)(1− P (ω))dF (ω)−

∫

ω
(R(ω)− P (ω))2dF (ω). (2.26)

The first integral in the RHS of (2.26) refers to the sharpness of the forecaster. We

say this refers to sharpness because it measures the over-all expected score of the

assessor, which is maximized when the assessor provides forecasts much further from

1/2. This implies that truth-telling is encouraged and truthful assessments which are

“more categorical” are given better expected scores. Moreover, the sharpness measure

is independent of the assessment R because it assumes truth-telling.

The second integral in (2.26) refers to a calibration measure. To better illustrate

this, consider the discrete case of (2.26) whose average score S̄ can be written as:

S̄ = −
n∑

j=1

ni
n
pi(1− pi)−

n∑

j=1

ni
n

(ri − pi)2,

where ni is the number of actual observations for event i. Note that a well-calibrated

person will have a calibration score of 0. This happens only when P = R, meaning the

percentage of times that the event occurred when the assessor reported ri is pi.

The idea of separating the score into components has been a long standing tradition

stemming from the statistical tradition of dividing the analysis of variance statistic into

its components. Sanders (1963) was the first to provide such an analysis with a focus
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on the quadratic rule (see also Blattenberger & Lad 1985, Murphy & Winkler 1987).

The primary reasons for this are (1) the quadratic rule is the most commonly used rule,

especially in the meteorological community where there is an active amount of research

in this area, and (2) the availability of statistical tools that could be used stemming

from the tradition of analyzing least squares. Similar decompositions exist for other

scores with different functional forms for the sharpness and calibration measures.

Decompositions allow a decision maker to separate an assessor’s skill via his ability

to provide sharp forecasts and his ability to attain calibration. However, a decision

maker should not focus solely on calibration as a measure of performance, ignoring

skill. Foster and Vohra (1998) shows that the use of calibration scores instead of scor-

ing rules could lead an assessor to game the system. This means that any assessor who

would like to improve his score based on calibration can do so if he is given a sufficient

number of tries.

Beyond Risk Neutrality. The idea that strict propriety implies that all assessor

who likes to maximize their expected score (or minimize their expected loss) has to

report truthfully is based on an implicit assumption that the assessor’s utility is linear

in the score. In some instances this may not be the case. Winkler and Murphy (1970)

showed that the property of truth-telling may be lost when the assessor has a nonlinear

utility for the score. For example, suppose that the assessor has exponential utility

(with risk tolerance parameter τ > 0) for the score:

u(S) = 1− exp−S/τ .

If |Ω| = 2 and a quadratic scoring rule is used, then the expected utility of an assessor

with belief p and report r is

Epu(S(r)) = 1− E[exp(S(r)/R)].

In this situation, truthful reporting is optimal only when p ∈ {0, 1
2 , 1}. If p ∈ (1/2, 1),

the optimal report is a value less than the true belief p, while if p ∈ (0, 1/2) we
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Figure 2.2: The effect of risk aversion
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expect the reports to be greater than the true belief. This is not surprising since risk

aversion suggests that the assessor would like to minimize her risk of assessing a large

probability for an event which turns out not to occur. Figure 2.2 illustrates this point

for various levels of τ . Note that as the individual becomes more and more risk averse,

her forecasts tend towards 1/2 showing conservatism in the sense that she prefers not to

commit too much probability to either state. On the other hand, as his risk tolerance

increases, he becomes more and more risk neutral and his optimal strategy becomes

closer to the truth-telling scenario.

The decision maker can correct for this if he knows the utility function by using

the scoring rule u−1(S(·, ·)) so that the expected utility is simply the expected score.

However, such knowledge of the assessor’s utility function is a very strong assumption.

Bickel (2007) suggests the logarithmic score as opposed to the quadratic and spherical

scoring rules because it is not affected as much by distortions in the utility function.

Another possible complication is that the assessor may be placed in a competitive

environment, competing with other experts. In this case, the assessor may care not

only about her score but also about her rank among her peers. Lichtendahl and

Winkler (2007) studied this environment and showed that overconfidence and extreme

forecasts may result from this additional pressure on the assessor. Here, we ignore

this possibility and note that this scenario can be avoided by making the environment

feel less competitive to avoid the game-theoretic repercussions of competition among

forecasters.

2.2 Information Measures

2.2.1 Entropy

One area of research which could provide insight when dealing with the notion of infor-

mativeness of probability assessments is information theory. This strand of literature

originally started with the question of how engineers could efficiently design a com-
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munication channel to reliably compress and transmit data, typically coming from a

sequence of random events.

Shannon (1948) was the first to provide a quantitative model to measure infor-

mation passing through an information channel. He showed that under the most

efficient scheme, the average number of bits (the fundamental unit of information)

required to report the occurrence of an event with relative frequency p is proportional

to ln(1/p) = − ln p. Thus, using expectation under the distribution p, the average

number of bits required to report an event is proportional to

H(p) = −
n∑

i=1

pi ln pi. (2.27)

In a more general setting, this measure which is called (Shannon’s) entropy can be

expressed in the form:

H(P ) = −
∫

Ω

dP

dµ
(ω) ln

dP

dµ
(ω)dµ(ω) (2.28)

where P ∈P. This entropy measure satisfies several appealing properties.

Remark 6. Shannon’s entropy satisfies the following properties

1. Non-negativity. H(P ) ≥ 0 for all P ∈P.

2. Concavity. H(P ) is concave in P .

3. Continuity. H(P ) is continuous in P . This means that small changes in the

probability should not lead to large jumps in the function.

4. Symmetry and Maximality. Based on the principle of insufficient evidence, if no

event is more likely than another, i.e. the event space is equiprobable then H(p)

should be maximized at this point. Moreover, if events are reordered then the

entropy score should be the same, i.e. H must be symmetric in its arguments.

5. Additivity. Consider two statistically independent partitions of the state space

which generate distributions P1, P2 ∈ P. If we measure the entropy of the

distribution attained by consecutively imposing the partitions into the state space,
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additivity implies that the entropy measure should be the same regardless of which

partition is used first, i.e.

H(P1 × P2) = H(P1) +H(P2). (2.29)

6. Recursivity. This implies that

H(p1, p2, p3, . . . , pn) = H(p1 + p2, p3 . . . , pn)

+(p1 + p2)H(p1, p2). (2.30)

for all P ∈P.

It turns out that if one wishes to satisfy continuity, maximality and additivity, then

the information measure has to be (2.27). We note that additivity can be replaced by

recursivity.

Based on the maximality principle, Shannon’s entropy, in effect, measures infor-

mativeness relative to the uniform distribution. If instead, we want to measure infor-

mativeness relative to some other distribution, an extension to Shannon’s entropy that

does this is known as Kullback-Leibler (1959) divergence.

Definition 9. Let P,Q ∈ P. The Kullback-Leibler divergence of P relative to Q is

given by

DKL(P ||Q) =
∫

Ω
p(ω) ln

p(ω)
q(ω)

dω = EP [ln(P/Q)]. (2.31)

Note that if Q is the uniform measure then we obtain Shannon’s entropy, showing

that entropy is based on measuring the gain in moving from the uniform distribution

to the probability distribution P .

Remark 7. The Kullback-Leibler Divergence satisfies the following properties:

1. Non-negativity. DKL(P ||Q) ≥ 0 for all P,Q ∈P.

2. Convexity. H(P ) is convex in P .
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3. Continuity. H(P ) is continuous in P . This means that small changes in the

probability should not lead to large jumps in the function.

4. Additivity. Suppose that A and B are statistically independent partitions of the

state space whose prior distributions are qA and qB, so that their prior joint dis-

tribution is qA×qB. Now suppose that independent experiments are performed,

which result in the updating of qA and qB to pA and pB, respectively, so that

the posterior joint distribution is pA × pB. Then the total information gain of

the two experiments is the sum of their separate Kullback-Leibler divergences:

DKL(pA × pB‖qA × qB) = DKL(pA‖qA)+DKL(pB‖qB). (2.32)

5. Recursivity. This implies that

DKL(p‖q) = DKL(p1 + p2, p3, ..., pn‖q1 + q2, q3, ..., qn) (2.33)

+ (p1 + p2)DKL

(
p1

p1 + p2
,

p2

p1 + p2
‖ q1

q1 + q2
,

q2

q1 + q2

)
.

The recursivity property is a strong requirement but it seems very appealing. It

suggests that when a refinement is provided after the transmission of a message which

clarifies the distinction between two states which are combined, then the entropy mea-

surement should be the same if only a “refined” message was sent.

Similar to Shannon’s entropy, Kullback-Leibler divergence satisfies both additiv-

ity and recursivity. Weakening additivity and/or recursivity leads to more general

measures of information.

2.2.2 φ-Divergence and Other Generalizations

Again, consider the σ-finite measure space (Ω,F , µ) and let Φ be the space of all

continuous, convex functions φ defined on [0,∞] which satisfy the following properties:

(i) φ is finite on (0,∞) and strictly convex on some point x ∈ (0,∞),

(ii) φ(1) = 0,

(iii) 0 · φ(0/0) = 0,

(iv) 0 · φ(y/0) = limx→∞
φ(x)
x .

(2.34)
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Divergence Measure φ(x)

Harmonic Mean 1−x
2
−
(

1+x−r
2

)−1/r

J-Divergence (x− 1) ln x

Kullback-Leibler x lnx

Matsusita |1− xa|1/a

Minimum Discrimination Information − ln x+ x− 1

Pearson / Chi-Square 1
2
(x− 1)2

Table 2.1: Some well-known φ-divergence families

Divergence Measure h(x) φ(x)

Bhattacharya − ln(1− x) −√x+ 1+x
2

Renyi 1
β(β−1)

ln(β(β − 1)x+ 1) xβ−r(β−1)−1
β(β−1)

Sharma-Mittal 1
α−1

(
(1 + β(β − 1)x)

α−1
β−1 − 1

) xβ−r(β−1)−1
β(β−1)

Table 2.2: Some well-known (h, φ)-divergence families

Under this framework, if P,Q ∈ P we can define the following generalization of

Kullback-Leibler divergence.

Definition 10. Let φ ∈ Φ. The φ-divergence of P relative to Q is given by

Dφ(P ||Q) =
∫

Ω

dQ

dµ
(ω)φ

(dP/dµ(ω)
dQ/dµ(ω)

)
dµ(ω) = EQ[φ(P/Q)] (2.35)

This measure is also known as an f -divergence, which was first introduced by

Csiszár (1963). When φ(x) = x lnx, we obtain DKL(P ||Q). Table 2.1 gives φ-functions

that generate some of the well-known φ-divergences (Pardo 2006).

Remark 8. Dφ(P ||Q) satisfies the following properties:

1. Theorem of Range. 0 ≤ Dφ(P ||Q) ≤ φ(0) + lim
x↑∞

φ(x)
x

.

2. Theorem of Uniqueness. If φ ∈ Φ then Dφ(P ||Q) = Dη(P ||Q) for all P,Q if and

only if φ ∼= η.
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[Vajda 1989]

Other parametric families of divergences can be generated using monotonic trans-

formations. In particular, we have:

Definition 11. Let φ ∈ Φ and let h be a differentiable increasing function defined from
[
0, φ(0) + lim

x↑∞
φ(x)
x

]
onto [0,∞). The (h, φ)-divergence of P relative to Q is given by

Dh
φ(P ||Q) = h(Dφ(P ||Q)). (2.36)

The domain of the function h comes from the Theorem of Range. Table 2.2 provides

some examples of the more well-known and well-studied families of (h, φ)-divergences.

Note that when h(x) = x, Dh
φ(P ||Q) = Dφ(P ||Q).
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Chapter 3

Scoring Probability Assessments

3.1 Scoring Rules with Baselines

In many instances we are interested in evaluating probabilities relative to some refer-

ence or baseline distribution. For example, in a location where precipitation occurs on

average 5% of the time it might be appropriate to measure the quality of a probability

forecast of rain relative to this baseline.

A typical measure used in the meteorological community to test the performance

of an assessor relative to some baseline distribution is a skill score (SS):

SS(R,ω) =
S(R,ω)− S(Q,ω)
S(T, ω)− S(Q,ω)

(3.1)

where S is a strictly proper scoring rule, Q a baseline distribution and T a perfect

forecast (i.e. a Dirac measure on the state that occurs). SS measures the improvement

in score from the baseline Q to R divided by the improvement from Q to a perfect

forecast. The denominator of this ratio is always positive by the monotonicity of S

but the numerator may either be positive or negative, thus providing a measure of the

intensity and direction of an assessor’s forecasting skill.

However, the skill score does not encourage truth telling. Murphy (1973) shows

that since the skill score is no longer strictly proper, hedging could pose a problem for

individuals who solely want to maximize their expected score.

The first method suggested to incorporate the notion of a baseline which avoids

the problem of hedging is the asymmetric rule of Winkler (1994) given in (2.23). Us-

ing a symmetric binary scoring rule such as the quadratic score to generate S̆, the

expected score function attains a maximum when the forecasts are categorical. Also

since maximization is in terms of r, truth telling (r = p) turns out to be still opti-

mal. The asymmetric rule is scaled such that the lowest expected score under honest
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reporting, zero, is achieved when p = q. The incorporation of a baseline suggests that

the expected score should attain the lowest possible expected score for truth-telling

if a person’s state of information or belief is exactly the same as that of the baseline

distribution.

For the other scoring rules mentioned earlier, particularly those which are symmet-

ric, the expected score is measured relative to the uniform measure, which gives an

equal weight to all the states in Ω.

Proposition 3.1.1. Suppose Ω is a finite set with n elements. For a symmetric,

strictly proper scoring rule S, the expected score under honest reporting is uniquely

minimized when r = p = ( 1
n ,

1
n , . . . ,

1
n ,

1
n).

Proof. Using the McCarthy-Savage-Hendrickson-Buehler Characterization Theorem,

we know that by the strict propriety of S, there exists a strictly convex function G

for which Si(p) = G(p) − 〈G′(p),p〉 + G′i(p), where G′(p) is a subgradient of G at

p. In particular we know that G(p) = EpS(p). Now, since S is symmetric, then at

p̃ = ( 1
n ,

1
n , . . . ,

1
n ,

1
n), Si(p̃) = Sj(p̃) and G′i(p̃) = G′j(p̃) for all i, j ∈ {1, . . . , n}. Hence,

using this result and the definition of a subgradient, we have for any g,

EgS(g) ≥ Ep̃S(p̃) + 〈G′(p̃),g − p̃〉

= Ep̃S(p̃) +
n∑

j=1

gjG
′
j(p̃)−

n∑

j=1

1
n
G′j(p̃)

= Ep̃S(p̃) +G′1(p̃)
( n∑

j=1

gj −
n∑

j=1

1
n

)

= Ep̃S(p̃),

which proves the result. �

One possible justification for this is Laplace’s principle of insufficient reason, which

states that without additional information the default prior should be the uniform

distribution since we do not know which state is more likely to occur. In certain in-

stances a uniform baseline distribution may not be an unreasonable assumption, e.g.

in an assessment of the probability that a coin will land heads. But in many other
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applications, this may not be reasonable.

Consider an insurance company asked to specify a price for a policy related to a

catastrophic hurricane similar to Hurricane Andrew or Hurricane Katrina. In this case,

a decision maker interested in the probability of a hurricane at a particular location,

say Florida or Louisiana, would not view (1
2 ,

1
2) as a reasonable baseline from which

to measure how useful a probability is. Similarly, someone participating in a betting

market for a particular sporting event might view the probabilities implied by the

current market odds in betting sites such as Tradesports or VegasLine as reasonable

benchmarks, since these reflect the decisions (hence the information) of a large number

of presumably informed bettors.

By incorporating this notion of a baseline distribution, our objective is to try and

better capture the skill of an assessor while at the same time reducing the “arbitrari-

ness” of a scoring rule by allowing it to be tailored to the situation at hand instead of

being held at an equal-probabilities default.

Are there other scoring rules that can incorporate this notion and be extended eas-

ily to more general cases (e.g. when Ω has more than 2 elements or if it were a subset

of Rn)? We will answer this through a generalization of the power and pseudospherical

scoring rules referred to in (2.13) and (2.14).

Consider a baseline Q which sufficiently covers the set P; i.e. for every ω, there

exists no R ∈ P such that r(ω) > 0 whenever q(ω) = 0. In the discrete case, this is

equivalent to having qj > 0 for all states, while in the continuous case, this implies that

Q does not assign zero measure on a set for which some P does in the set of allowable

measures. This assumption may be somewhat strong but it coincides with the spirit

of a baseline. If a state is believed by everyone to be an impossible event then no one

should assign any probability mass on such a state.

The generalization then works by using this baseline as the ratio R/Q in place of R

in the regular setting, such that the new “weighted” power and pseudospherical scores
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can now be expressed as:

SP (β)(R,ω||Q) :=
(r(ω)/q(ω))β−1 − 1

β − 1
− EQ[(R/Q)β]− 1

β
(3.2)

=
(r(ω)/q(ω))β−1 − 1

β − 1
− ER[(R/Q)β−1]− 1

β
(3.3)

(3.4)

and

SS(β)(R,ω||Q) :=
1

β − 1



(

r(ω)/q(ω)

(EQ[(R/Q)β])1/β

)β−1

− 1


 (3.5)

=
1

β − 1



(

r(ω)/q(ω)

(ER[(R/Q)β−1])1/β

)β−1

− 1


 (3.6)

for β ∈ R. Note here that unlike the original construction of the power and pseudospher-

ical scoring rules by Good (1971) and Selten (1998), these hold for all real β instead

of simply β > 1. As a special case, when µ is a counting measure,

S
P (β)
i (r||q) :=

(ri/qi)β−1 − 1
β − 1

− Eq[(r/q)β]− 1
β

(3.7)

=
(ri/qi)β−1 − 1

β − 1
− Er[(r/q)β−1]− 1

β
(3.8)

(3.9)

and

S
S(β)
i (r||q) :=

1
β − 1



(

ri/qi

(Eq[(r/q)β])1/β

)β−1

− 1


 (3.10)

=
1

β − 1



(

ri/qi

(Er[(r/q)β−1])1/β

)β−1

− 1


 (3.11)

for i ∈ Ω = {1, . . . , n}. Table 3.1 provides some special cases of these rules.

Note that for any fixed values of r, q, and β, the pseudospherical score vec-

tor (SS(β)
1 (r‖q), . . . , SS(β)

n (r‖q)) is a positive affine transformation of the power score

vector (SP (β)
1 (r‖q), . . . , SP (β)

n (r‖q)), since both vectors are affine transformations of

(r/q)β−1, although the origins and scale factors of the transformations vary with r, q,

and β. Thus, although the two rules lead to different expected payoffs under truthful
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S
P (β)
i (r||q) S

S(β)
i (r||q)

β = −1 −1
2
(1 + (qi/ri)

2) + Eq[q/r)] 1
2
(1− ((qi/ri)/Eq[q/r)])2)

β = 0 1− (qi/ri) + Eq[ln(q/r)] 1− (qi/ri) exp (−Eq[ln(q/r)])

β = 1
2

2
(

2−
√
qi/ri − Er[

√
q/r]

)
2
(

1−
√
qi/riEr[

√
q/r]

)

β = 1 ln(ri/qi) ln(ri/qi)

β = 2 ((ri/qi)− 1)− 1
2

(Er[r/q]− 1) ((ri/qi)/
√
Er[r/q])− 1

Table 3.1: Special cases of the power and pseudospherical scoring rules.

reporting as a function of p (for the same q and β), and they create different incentives

for information-gathering and different penalties for dishonest reporting, they never-

theless present the same relative risk profile to a truthful forecaster whose r is already

fixed. At β = 1 both rules converge to the weighted logarithmic score ln(ri/qi). At

β = 2, weighted forms of the quadratic and spherical scoring rules are obtained. The

cases β = 0 and β = 1
2 have not received much (if any) attention in the antecedent

literature, but it will be shown later that these yield interesting connections to some

well-known concepts in information theory.

Note that the scaling and centering used here makes the rules (3.4)-(3.6) strictly

proper for all values of β as will be later shown. In the earlier versions of these scores,

they are strictly proper only for certain values of β. For example if we consider the

pseudospherical scoring rule

Si(r) =
rβ−1
i

||r||β−1
β

with β > 1, the expected score is

ESp(r) =

∑

j∈Ω

pjr
β−1
j

||r||β−1
β

≤

(∑

j∈Ω

pβj

) 1
β
(∑

j∈Ω

rβj

)β−1
β

||r||β−1
β

=
||p||β · ||r||β−1

β

||r||β−1
β

= ||p||β
= ESp(p),
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by Hölder’s inequality. Then by coherence it would follow that the equality holds only

when p = r; but for β ≤ 1, this is no longer true.

For the weighted power and pseudospherical rules, the score received by an assessor

is scaled such that when P = Q she receives an expected score of 0. In the symmetric

case, the highest score is achieved when a categorical forecast is given to the state

that occurs. For these new scores it is achieved when the least likely event under the

baseline (i.e. the state with the lowest qi) occurs and a categorical forecast is given to

that event. In the case where Q is the uniform measure, all events are equiprobable

and we simply recover the regular symmetric scores.

What is achieved under this new asymmetric score is a correction in the way by

which we measure the information value of knowing the distribution P instead of some

other distribution Q as seen from the decision maker’s perspective.

As an illustration of how the asymmetry affects the score, consider the case

Ω = R2, Figure 3.1 shows how the score of an assessor who provides an assessment of

P = N

(
 0

0


 ,

 1 0

0 1



)

changes as various realizations of ω are observed. For the regular “unweighted” version

of the logarithmic rule, the plot clearly shows that the maximum score is achieved when

the point (0, 0) is observed since it is the point where the density function is highest.

But when we introduce a baseline

Q = N

(
 1

1


 ,

 2 0

0 2



)
,

the maximum value is attained at a different point. In fact is happens at the point

(−1,−1) because among all the values in R2 this yields the highest ratio p(ω)/q(ω).
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Figure 3.1: A comparison of the regular [left] and weighted [right] logarithmic

scoring rule under various outcomes ω
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This can be easily verified:

r(x, y) =
p((x, y))
q((x, y))

= exp
[1

2

(1
2

(x− 1)2 +
1
2

(y − 1)2
)

+
1
2

(−x2 − y2)
]
.

∂r

∂x
=

[1
2

(x− 1)− x
]
r(x, y) = 0 ⇒ 1

2
(x− 1)− x = 0

⇒ −1 + x = 2x

⇒ x∗ = −1

which yields the maximal point (−1,−1) after a similar computation for y∗, and veri-

fication of the second order condition.

With respect to expected scores, the power and pseudospherical scores with base-

line Q yield “similar” forms given by:

ESP (β)(R||Q) =
EP [(R/Q)β−1]− 1

β(β − 1)
,

ESS(β)(R||Q) =

(
EP [(R/Q)β−1]

)1/β − 1
β − 1

,

which are close in form to the expected scores of (2.14) and (2.13) with the exception

that now we use the ratio R/Q instead of simply R. We will show later that the

expected scores are maximized when P = R, yielding the following expected scores

under truth-telling:

ESP (β)(P ||Q) =
EQ[(P/Q)β]− 1

β(β − 1)
=
EP [(P/Q)β−1]− 1

β(β − 1)
, (3.12)

ESS(β)(R||Q) =

(
EQ[(P/Q)β]

)1/β − 1
β − 1

=

(
EP [(P/Q)β−1]

)1/β − 1
β − 1

. (3.13)

To illustrate how the new expected score compares to the uniform baseline case, we

consider the case when |Ω| = 3. Figure 3.2 shows the contours of the expected score in

the simplex for four different scoring rules. These are the quadratic and spherical scores

with baselines (1/3, 1/3, 1/3) and (7/10, 2/10, 1/10). Under the uniform baseline, these

scores correspond to (2.7) and (2.11), while under the other baseline, we apply formulas

(3.9) and (3.11).
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Figure 3.2: Expected score contours for the regular quadratic score [top left],

the spherical score [top right], the power score with β = 2 [bottom left] and the

pseudospherical score with β = 2 [bottom right] with baseline (7/10,2/10,1/10)

for the latter two
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For the symmetric quadratic and spherical rules the expected score under truthful

reporting attains a minimum at the center of the simplex and behaves symmetrically as

we move from the center to any corner of the simplex; for the lower plots in Figure 3.2

the “center” of the contours now shifts to the new baseline. Moving from left to right,

we notice that the contours of the spherical rule are more dispersed in the sense that

the range of values for the spherical score is much smaller. This is not too surprising

since

V ar[SS(β)] =
1

(β − 1)2
EP [(P/Q)β−1]2

(
1
β
−1
)
V ar

[(P
Q

)β−1]

and

V ar[SP (β)] =
1

(β − 1)2
V ar

[(P
Q

)β−1]
,

which indicates that the variance of the spherical score is a “dampened” version of the

variance of the power score through a proportionality constant of EP [(P/Q)β−1]2
(

1
β
−1
)
,

which is typically less than 1.

In addition, the contours generate a convex function.

Proposition 3.1.2. The expected scores for the power and pseudospherical scores given

by (3.12) and (3.13) are strictly convex.

Proof. We begin by showing that the pseudospherical score is convex. Consider two

distributions f and g, both in P. For any λ ∈ [0, 1], if we denote h ≡ λf + (1− λ)g,
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then we have:

EhS
S(β)(h||q) =

1
β − 1

[(
Eh[(h/q)β−1]

)1/β − 1
]

=
1

β − 1

{[(∑

i∈Ω

λfi + (1− λ)gi
qβ−1
i

)β]1/β
− 1
}

≤ 1
β − 1

{[(∑

i∈Ω

λfi

qβ−1
i

)β]1/β]
+
[(∑

i∈Ω

(1− λ)gi
qβ−1
i

)β]1/β]
− 1
}

(via a generalized Minköwski’s inequality (ref. Hardy et al. 1934))

=
1

β − 1

{
λ
[(∑

i∈Ω

fi

qβ−1
i

)β]1/β]
− λ

+
[
(1− λ)

(∑

i∈Ω

gi

qβ−1
i

)β]1/β
− (1− λ)

]}

= λEfS
S(β)(f ||q) + (1− λ)EgS

S(β)(g||q),

which proves convexity. Strict convexity comes from the fact that the inequality holds

only when all the values are equal to 0 or are all equal to 1, which can not happen in

our context. Next consider the function

h(x) =
[(β − 1)x+ 1]β − 1

β(β − 1)

which has a derivative

h′(x) = [(β − 1)y + 1]β−1.

When β > 1, h′(x) is clearly positive. When β < 1, h′(x) > 0 if and only if y ≤ − 1
β−1 .

We then note that EpS
S(β)(p||q) ≥ 0 and attains a maximum when a categorical

forecast is given to some state say i, i.e. the state for which qj is lowest for all

j = 1, . . . , n. Therefore, for β < 1,

EpS
S(β)(p||q) ≤ − 1

β − 1
− q

−1+ 1
β

i

1− β < − 1
β − 1

.

We use this fact to show that for all possible values x of EpS
S(β)(p||q), the function

h(x) is increasing. Hence, the expected score of the power rule EpS
P (β)(p||q) must

also be strictly convex since it is generated by an increasing function, namely p. For

the continuous case, the proof follows exactly the same procedure using the generalized
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SP (β)(P, ω||Q) SS(β)(P, ω||Q)

β = −1 −1
2(1 + (q(ω)/p(ω))2) + EQ[Q/P ] 1

2(1− ((q(ω)/p(ω))/EQ[Q/P ])2)

β → 0 1− (q(ω)/p(ω)) +EQ[ln(Q/P )] 1− (q(ω)/p(ω)) exp (−EQ[ln(Q/P )])

β = 1
2 4− 2

√
q(ω)/p(ω)− 2EP [

√
Q/P ] 2− 2

√
q(ω)/p(ω)EP [

√
Q/P ]

β → 1 ln(p(ω)/q(ω)) ln(p(ω)/q(ω))

β = 2 (p(ω)/q(ω))− 1
2 (EP [P/Q] + 1) ((p(ω)/q(ω))/

√
EP [P/Q])− 1

Table 3.2: The expected scores under truth-telling with the weighted power and

pseudospherical scoring rules for special cases of β

Minköwski inequality for integrals and the fact that the maximum score is attained

with a Dirac measure on the least likely state with non-zero density. �

This property of the expected score is important since it will guarantee that the

scoring rule encourages truth-telling.

Proposition 3.1.3. The power and pseudospherical scoring rules given by (3.4) and

(3.6) are strictly proper.

Proof. Since the expected scores are strictly convex, the McCarthy-Savage-Hendrickson-

Buehler Theorem implies that the scores are strictly proper for all β. �

Table 3.2 shows the functional forms of these rules for certain special or limiting

values of β. In particular, for β = 2 we have weighted versions of the quadratic and

spherical rules. For β → 1, we simply get the logarithmic rule for both families. Since

the weighted logarithmic score is an affine transformation of the unweighted logarith-

mic score, it retains its locality property. In contrast, some other properties of rules

from (2.14) and (2.13) for specific values of β do not carry over to (3.4) and (3.6). For

example the weighted quadratic and spherical rules no longer retain their neutrality

or proportionality properties.

In addition, these rules can also be easily decomposed into refinement and calibra-

tion terms. We provide the decomposition for the average score S̄ in the discrete case
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and note that the continuous versions follow analogously:

WEIGHTED POWER SCORE

S̄ =
1

β − 1

n∑

i=1

pi

((ri
qi

)β−1
− 1
)
− 1
β

(
Er

[( r
q

)β−1]
− 1
)

=
1

β − 1

n∑

i=1

pi

((ri
qi

)β−1
− 1
)
− 1
β

(
Er[(r/q)β−1]− 1

)− 1
)

−Ep[(p/q)β−1]− 1
β(β − 1)

+
Ep[(p/q)β−1]− 1

β(β − 1)

=
1

β(β − 1)

[
β

n∑

i=1

pir
β−1
i

qβ−1
i

− β − (β − 1)
n∑

i=1

rβi

qβ−1
i

+ (β − 1)−
n∑

i=1

pβi

qβ−1
i

+ 1
]

+
Ep[(p/q)β−1]− 1

β(β − 1)

=
1

β(β − 1)

[ n∑

i=1

(βpirβ−1
i − (β − 1)rβi − pβi

qβ−1
i

)]
+
Ep[(p/q)β−1]− 1

β(β − 1)

The first term refers to a measure of calibration. It is equal to zero when r = p.

Since we hold r to be fixed, the FOC w.r.t. p is βrβ−1
i = βpβ−1

i = 0. Note that the

second order condition is satisfied since ∂2Calibration
∂p2 = −pβ−2

i , which is negative when

we have a sufficiently large sample. The second term refers to sharpness. This term

attains a minimum as expected when p = q. Moreover, it attains a maximum when

pj = 1 (and pi = 0 for i 6= j), where j := arg min{j : qj}.

40



www.manaraa.com

WEIGHTED PSEUDOSPHERICAL SCORE

Similarly, we have the following:

S̄ =
1

β − 1

n∑

i=1

pi
(ri/qi)β−1

||r/q||β−1
β

− 1
β − 1

=
1

β − 1

n∑

i=1

pi
(ri/qi)β−1

||r/q||β−1
β

− 1
β − 1

− 1
β − 1

Ep[(p/q)β−1]1/β

+
1

β − 1
Ep[(p/q)β−1]1/β

=
1

β − 1

n∑

i=1

pi
(ri/qi)β−1

||r/q||β−1
β

− 1
β − 1

Ep[(p/q)β−1]1/β +
1

β − 1

[
Ep[(p/q)β−1]1/β − 1

]

=
1

β − 1

n∑

i=1

pi
(ri/qi)β−1

||r/q||β−1
β

− 1
β − 1

Ep[(p/q)β−1]1/β
||p/q||β−1

β

||p/q||β−1
β

+
1

β − 1

[
Ep[(p/q)β−1]1/β − 1

]

=
1

β − 1

[ 1

||r/q||β−1
β ||p/q||β−1

β

n∑

i=1

pi

(
(ri/qi)β−1||p/q||β−1

β − (pi/qi)β−1||r/q||β−1
β

)]

+
1

β − 1

[
Ep[(p/q)β−1]1/β − 1

]

Note that the the right hand term refers to a sharpness term and again the left hand

term refers to a calibration term which is minimized when p = r. By quick inspection,

this is 0 when the assessor is perfectly-calibrated. It can be shown that this generates

the minimum score for the calibration term.

3.2 Connections and Motivations

Next, we show that these new weighted scoring rules have interesting connections with

some measures that have been proposed in the information theory literature. After

that, we present some generic expected utility optimization models that provide a

decision theoretic connection between these scoring rules and the notion of information

value in an economic setting.

41



www.manaraa.com

3.2.1 Information Theoretic Connections

One of the key properties which made the logarithmic scoring rule popular with some

researchers is the connection it has to information theory. Recall that the expected

score for truthful reporting under the logarithmic score (2.9) is equal to the negative

of Shannon’s entropy. For the new families we have proposed, the logarithmic score is

attained as β → 1. With respect to the other values of β, there exist connections to

two parametric families of divergence measures suggested in the literature.

We first show that the power score is related to a well-studied φ-divergence, while

the pseudospherical score has an expected score which is an (h, φ)-divergence.

Consider the function

φβ(x) =
xβ − β(x− 1)− 1

β(β − 1)
, x 6= 0, 1 (3.14)

This function satisfies (2.34), and thus φ ∈ Φ for all β ∈ R\{0, 1}. Moreover, in the

limit, as β → 0 and 1 respectively, we have:

φ0(x) = x lnx− x+ 1

φ1(x) = − lnx+ x− 1

which also satisfies the requirements of (2.34). This generates the divergence family

Dφβ (P ||Q) =
EP [(P/Q)β−1]− 1

β(β − 1)
(3.15)

for β ∈ R. This family which only differs by a scaling constant was originally proposed

by Havrda and Chavrát (1967), who called it the directed divergence of order β between

p and q. The notation used was for the discrete case since the original paper did not

consider the continuous case. The scaling used in (3.15) was independently derived

by Rathie and Kannappan (1972). Later on, Cressie and Read (1982) and Hausler

and Opper (1997) independently came up with the same functional form in a different

context.

Interestingly, Dφβ (P ||Q) is the expected score for honest reporting under the

weighted power scoring rule. Hence, we shall refer to this as the power divergence
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following Cressie and Read, who used this family in the context of statistical inference.

Similar to the weighted power scoring rule, this divergence family has some inter-

esting special cases. In particular, at β = 1, the power divergence between P and Q is

equal to the KL divergence, while at β = 1
2 , the power divergence is

Dφ1/2
(P ||Q) = 4

(
1−

∫ √
p(ω)q(ω)dω

)
, (3.16)

which is proportional to the squared Hellinger distance between P and Q, as noted by

Haussler and Opper (1997). The Hellinger distance DH(P ||Q) widely used in statistics

is defined by

DH(P ||Q) ≡
(∫ (√

p(ω)−
√
q(ω)

)2
dω

)1/2

, (3.17)

which gives us the following relationship:

Dφ1/2
(P ||Q) = 2DH(P ||Q)2. (3.18)

At β = 2 the power divergence reduces to (a multiple of) another well-known diver-

gence, the χ2-divergence (Pearson 1900):

D2(P ||Q) =
1
2

(EP [P/Q]− 1) =
1
2
χ2(P ||Q). (3.19)

while at β = −1 it is the reverse Chi-square divergence 1
2χ

2(Q||P ).

On the other hand, the pseudospherical score is not a φ-divergence. Instead, it is

a monotonic transformation of a φ-divergence. In particular, it is an h-transformation

of the power divergence, with

h(x) =
1

β − 1
[(
β(β − 1)x+ 1

) 1
β − 1

]
. (3.20)

The (h, φ)-divergence generated by (3.14) and (3.20) yields

Dh
φβ

(P ||Q) =

(
EP [(P/Q)β−1]

) 1
β − 1

β − 1
, (3.21)

which is the expected score of the pseudospherical scoring rule. For this reason, we shall

call this the pseudospherical divergence. The roots of this divergence measure came

much earlier in a paper written by Arimoto (1971) and further elaborated by Sharma
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ESP (β)(P ||Q) = Dφβ(P ||Q) ESS(β)(P ||Q) = Dh
φβ

(P ||Q)

β = −1 1
2
χ2(Q||P ) 1

2
(1− (χ2(Q||P ) + 1)−1)

β → 0 DKL(Q||P ) 1− exp(−DKL(Q||P ))

β = 1
2

2DH(P ||Q)2 2
(

1− (1− 1
2
DH(P ||Q)2

)2
)

β → 1 DKL(P ||Q) DKL(P ||Q)

β = 2 1
2
χ2(P ||Q)

√
χ2(P ||Q) + 1− 1

Table 3.3: Weighted expected scores and corresponding generalized divergences

and Mittal (1975), Boekee and Van der Lubbe (1980) and Lavenda and Dunning-Davies

(2003). Arimoto’s original form is different from our form by a scaling constant and is

expressed only for the discrete case, but the connections can be easily drawn from these

forms to arrive at (3.21). Note that because of the transformation the special cases

for the pseudospherical divergence will simply be transformations of the well-known

measures in the power case. Table 3.3 provides the forms of these special cases for

β = −1, 0, 1
2 , 1 and 2.

We now discuss some properties of these divergences. First, we note that these

measures are always non-negative. For the power divergence, this follows immediately

from the Theorem of Range, while for the pseudospherical divergence, it is true since

h is increasing and h(0) = 0. This fact allows us to prove the following proposition

easily.

Proposition 3.2.1. The weighted power and pseudospherical scores attain a minimum

expected score under truth-telling when P = Q.

Proof. Since 0 ≤ EPSP (β)(P ||Q) and EQSP (β)(Q||Q) = 0, the minimum is attained at

the baseline distribution. The same is true for SS(β) since h is a monotonic transfor-

mation. �

In the discrete case when β = 1, we know that the power and pseudospherical diver-

gences satisfy additivity and recursivity, but in general the power and pseudospherical

divergences are neither additive nor recursive.
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Proposition 3.2.2. Let A and B be statistically independent partitions of Ω whose

prior distributions are qA and qB, so that their prior joint distribution is qA × qB.

Then suppose that independent experiments are performed, which result in the updat-

ing of qA and qB to pA and pB, respectively, so that the posterior joint distribution

is pA × pB. Then the power and pseudospherical divergences satisfy the following

pseudoadditivity conditions:

Dφβ (pA × pB||qA × qB) = Dφβ (pA||qA) +Dφβ (pB||qB)

+β(β − 1)Dφβ (pA||qA)Dφβ (pB||qB)

Dh
φβ

(pA × pB||qA × qB) = Dh
φβ

(pA||qA) +Dh
φβ

(pB||qB)

+(β − 1)Dh
φβ

(pA||qA)Dh
φβ

(pB||qB)

Proof. We prove this by showing that

Gαβ(pA×pB||qA×qB) = Gαβ(pA||qA)+Gαβ(pB||qB)+αβ(β−1)Gαβ(pA||qA)Gαβ(pB||qB),

(3.22)

where

Gαβ(P ||Q) =
(EP [(P/Q)β−1])α − 1

αβ(β − 1)

with α = 1 for the power case and α = 1
β for the pseudospherical case. The RHS of

(3.22) can now be expressed as:

RHS = Gαβ(pA||qA) +Gαβ(pB||qB) + αβ(β − 1)Gαβ(pA||qA)Gαβ(pB||qB)

=
1

α(β)(β − 1)

[(
EpA [(pA/qA)β−1]

)α − 1 +
(
EpB [(pB/qB)β−1]

)α − 1− 1

+
((
EpA [(pA/qA)β−1]

)α − 1
)
·
((
EpB [(pB/qB)β−1]

)α − 1
)]

=
1

αβ(β − 1)
[(
EpA [(pA/qA)β−1]

)α(EpB [(pB/qB)β−1]
)α − 1

]

=
1

αβ(β − 1)

[(∑

i

pAi

(pAi
qAi

)β−1∑

j

pBj

(pBj
qBj

)β−1)α
− 1
]

=
1

αβ(β − 1)

[(∑

i

∑

j

pAipBj

(pAipBj
qAiqBj

)β−1)α
− 1
]

=
1

αβ(β − 1)
[(
EpA×pB [((pA × pB)/(qA × qB))β−1]

)α − 1
]

= Gαβ(pA × pB||qA × qB). �
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Under this new notion of additivity, the divergence acts differently in various re-

gions. For β ∈ (0, 1), the power divergence is subadditive, i.e. Dφβ (pA × pB||qA ×
qB) ≤ Dφβ (pA||qA) + Dφβ (pB||qB), while for β /∈ [0, 1], it is superadditive, i.e.

Dφβ (pA × pB||qA × qB) ≥ Dφβ (pA||qA) + Dφβ (pB||qB). On the other hand, sub-

additivity (superadditivity) holds for the pseudospherical divergence only when β < 1

(β > 1), since the coefficient of the cross-term is simply β − 1 in this case instead

of β(β − 1). When β = 1, pseudoadditivity reduces to additivity, but for the power

divergence this is also true when β = 0, which is the special case of the inverse Kullback-

Leibler divergence.

Neither rule satisfies recursivity. The power score, however, satisfies a recursive-like

property.

Proposition 3.2.3. The power divergence function satisfies the following pseudore-

cursivity property:

Dφβ (p||q) = Dφβ (p1 + p2, . . . , pn||q1 + q2, . . . , qn) (3.23)

+(p1 + p2)
(p1 + p2

q1 + q2

)β−1
Dφβ

( p1

p1 + p2
,

p2

p1 + p2

∣∣∣
∣∣∣ q1

q1 + q2
,

q2

q1 + q2

)
.

Proof. For ease of notation, let

η = (p1 + p2)
(p1 + p2

q1 + q2

)β−1
.

The RHS of (3.24) can be expressed as

RHS =
1

β(β − 1)

[(
η +

∞∑

j=3

pj

(pj
qj

)β−1
− 1
)

+ η
( p1

p1 + p2

(p1(q1 + q2)
q1(p1 + p2)

)β−1

+
p2

p1 + p2

(p2(q1 + q2)
q2(p1 + p2)

)β−1
− 1
)]

=
1

β(β − 1)

[(
η +

∞∑

j=3

pj

(pj
qj

)β−1
− 1
)

+ η
(
η−1p1

(p1

q1

)β−1

+η−1p2

(p2

q2

)β−1
− 1
)]

=
1

β(β − 1)

[
p1

(p1

q1

)β−1
+ p2

(p2

q2

)β−1
+
∞∑

j=3

pj

(pj
qj

)β−1
− 1
]

= Dφβ (p||q). �
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Notice that when β = 1, this reduces to the original notion of recursivity. For other

values of β, the extra factor
(
p1+p2

q1+q2

)β−1
may either increase or decrease the sum. For

example, when β > 1 the entropy of the “refined” distribution (i.e. the one which

needs only one transmission) is smaller (larger) than the “unrefined” distribution if

p1 + p2 < (>)q1 + q2. On the other hand, the pseudospherical score does not satisfy

any obvious recursive property.

3.2.2 A Utility Maximization Framework

We begin by considering two generic optimization problems whose solution provides an

appropriate measure of the information value contained in an assessor’s probabilistic

forecast. In these models we consider a risk averse decision maker with probability

distribution P who bets against a non-strategic risk neutral opponent with distribu-

tion Q. Alternatively, we can represent this problem as one where the same decision

maker invests in a complete market for contingent claims whose supporting risk neutral

distribution is described by Q.

Now, let ω ∈ Ω ⊂ Rn denote a generic state, let X ⊆ R be the set of outcomes for

the decision maker (gains or losses in units of money), let a : Ω 7→ X denote an act

(or decision) whose outcome in state ω is a(ω) ∈ X, let A denote the set of available

acts, and let p and q denote the probability density functions of the forecaster and

opponent, respectively (i.e., the forecaster’s probability density evaluated at state ω is

p(ω)).

In the first model (“S”), we consider a single period consumption model wherein

a decision maker is endowed with a single-attribute von Neumann-Morgenstern utility

function u(x). Her objective is to find the payoff vector x that maximizes her subjec-

tive expected utility subject to the self-financing constraint Eq[x] ≤ 0. It then follows

that this decision maker’s optimal expected utility, denoted US(P ||Q), is determined
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by:

Model S : US(P ||Q) ≡ max
a∈A

EP [u(a)] s.t. EQ[a] ≤ 0. (3.24)

In the second problem (“P”), we consider a two-period scenario in which consump-

tion occurs and the decision maker with probability distribution P has a quasilinear

utility function u(a, b) = a+u(b) where a is money consumed at time-0 and b is money

consumed at time-1. The decision maker’s objective is to maximize the overall con-

sumption in both periods by purchasing at market prices a vector of time-1 payoffs

using time-0 funds. Then the cost at time-0 for the act a or the cost of achieving the

vector x is EQ[a]. Therefore, the decision maker’s optimal expected utility, denoted

UP(P ||Q) can be obtained from:

Model P : UP(P ||Q) ≡ max
a∈A

EP [u(a)]− EQ[a] (3.25)

Note that the assumption of a risk neutral opponent is without loss of generality.

For the models we are considering it is sufficient to require at least one player to

be risk averse and the forecaster to be more risk averse than the opponent is risk

seeking. Alternatively, we can simply require that the forecaster is less risk seeking

than the opponent is risk averse, which is guaranteed when the sum of their Arrow-

Pratt absolute risk aversion measures is positive throughout any transaction. Hence, if

we denote u(x) ≡ ũ(−v−1(x)) and ṽ(z) ≡ −v(−ũ−1(−z)), then the following problems

are equivalent:

Model S : US(P ||Q) ≡ max
a∈A

EP [u(a)] s.t. EQ[a] ≤ 0.

Model S1 : US(P ||Q) ≡ max
b∈−v(A )

EP [ũ(b)] s.t. EQ[v(b)] ≤ 0.

Model S2 : US(P ||Q) ≡ max
c∈ũ(A )

EP [c] s.t. EQ[ṽ(c)] ≤ 0.

Analogously, for Model P, we have

Model P : UP(P ||Q) ≡ max
a∈A

EP [u(a)]− EQ[a]

Model P1 : UP(P ||Q) ≡ max
b∈−v(A )

EP [ũ(b)]− EQ[v(b)]

Model P2 : UP(P ||Q) ≡ max
c∈ũ(A )

EP [c]− EQ[ṽ].
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Name uβ(x)

β = −1 Quadratic utility −1
2
((1− x)2 − 1)

β → 0 Exponential utility 1− exp(−x)

β = 1
2

Reciprocal utility 2
(

1− 1
1+x/2

)

β → 1 Logarithmic utility ln(1 + x)

β = 2 Square-root utility
√

1 + 2x− 1

Table 3.4: Examples of normalized linear-risk-tolerance utility functions

Next, we focus our attention on the utility function u(x). We consider a normalized

risk averse utility function whose risk tolerance (the reciprocal of the Arrow-Pratt risk

aversion measure, −u′′(x)/u′(x)) is a linear function of wealth, parameterized as:

uβ(x) =
1

β − 1
[(1 + βx)(β−1)/β − 1] (3.26)

for β ∈ R. Under this parametrization, this family contains some well-known special (or

limiting) cases such as the exponential and logarithmic utility functions. The function

in (3.26) with the slope of uβ(x) at the origin equalling 1 is normalized in the sense

that it is centered at the origin, i.e., uβ(0) = 0 for all β ∈ R. Hence, for Model P the

marginal rates of substitution between time-0 consumption and time-1 consumption

are the same. Table 3.4 provides the functional form of some of these special cases,

while Figure 3.3 shows how these plots compare. Since the risk tolerance is linear in

wealth, this family is known as the hyperbolic absolute risk aversion (HARA) family

of utility functions.

HARA utility functions are all continuously differentiable functions in some finite

neighborhood around the origin. They exhibit a convenient symmetry around β = 1
2 ,

meaning that u1−β(x) = −uβ(−x), or equivalently, uβ(−u1−β(−x)) = x. Graphically,

this means that the plot of u1−β(x) is obtained from the graph of uβ(x) by reflecting

it around the line y = −x. The power (exponent) in uβ is the term (β − 1)/β, which

has the property that ((β − 1)/β)−1 = ((1 − β) − 1)/(1 − β), so that swapping β for

1 − β results in another power utility function whose power is the reciprocal of the
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Figure 3.3: Some commonly used HARA utility functions

original. Thus, under this parametrization, the reciprocal utility function (β = 1
2) is

its own reflection around the line y = −x, the exponential and log utility functions

(β = 0 and β = 1) are reflections of each other, and the power utility function with

exponent δ is the reflection of the power utility function with exponent 1/δ for any

positive or negative δ other than 0 or 1.

Descriptively, we say that the set of functions uβ is a family of functions which

can be described by its skewness with respect to a reference function. At the center

of this family (at β = 0) is the exponential utility function. For values less than

0, we have functions whose left tail is said to be more linear than the exponential,

namely the power functions with positive exponents. On the other hand, for β > 0

we have the opposite: the right tail is more linear than the exponential function. This

side contains the logarithmic function and the power family with negative exponents.

Finally, as β approaches positive or negative infinity, the utility function approaches

a linear function, implying risk neutrality. Though all HARA utility functions exhibit

risk aversion, those with non-decreasing risk tolerance (i.e. β ≥ 0) are the ones which

are generally compatible with economic intuition.
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Putting all of these together, the main result we have is that these models yield a

connection to the scoring rules developed in this chapter. Thus, there exists a decision

theoretic motivation for these new parametric families of scoring rules using utility

functions that are commonly encountered in practice. What will come out of all these

models is that the optimal expected utility that we get coincides with the expected

scores of these new families of scoring rules, which imply that the information value

that is measured in these decision models coincides with that of the scoring rule.

Proposition 3.2.4. The optimal expected utility for Model P given by (3.25) with a

utility function parameterized by β in (3.26) is the expected score of the pseudospherical

score, i.e. UP(P ||Q) = EPSP (β)(P ||Q). The same result holds for Model S and the

expected score of the power scoring rule.

Proof. We begin the proof for Model P in the continuous setting. Writing out the

maximization problem, we have

max EP [uβ(a)] + EQ[−a] =
∫

[p(ω)uβ(a(ω))− q(ω)a(ω)]dω.

Applying the Euler-Lagrange Theorem, we have

0 =
∂

∂a

[
p(ω)

( 1
β − 1

(
1 + βa(ω)

)β−1
β − 1

)
− q(ω)

]
− 0

= p(ω)
(

1 + βa(ω)
)− 1

β − q(ω).

Simplifying, this leads to

(
1 + βa(ω)

) 1
β =

p(ω)
q(ω)

1 + βa(ω) =
(p(ω)
q(ω)

)β

a(ω) =
1
β

[(p(ω)
q(ω)

)β
− 1
]
.

Plugging this into the objective function leads to an optimal utility payoff in state ω
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of

gβ(d) + Eq[−(d)] =
1

β − 1

{[(p(ω)
q(ω)

)β]β−1
β − 1

}
−
[ ∫ p(ω)β

βq(ω)β−1
dω −

∫
q(ω)
β

dω
]

=
1

β − 1

[(p(ω)
q(ω)

)β−1
− 1
]
− 1
β

[ ∫
q(ω)

(p(ω)
q(ω)

)β
dω − 1

]

=
1

β − 1

[(p(ω)
q(ω)

)β−1
− 1
]
− 1
β

[EQ[(P/Q)β]− 1]

= EPSP (β)(P ||Q),

which is the desired result. For Model S

max EP [uβ(a)] =
∫
uβ(a(ω))dP (ω)

s.t. EQ[−a] = −
∫
a(ω)dQ(ω) ≥ 0,

we begin by introducing a Lagrange multiplier λ and proceed in a similar fashion with

Model P. In particular, we have the following problem:

max
∫

[p(ω)gβ(a(ω))− λq(ω)a(ω)]dω

with the Euler-Lagrange condition (based on what we have done earlier)

p(ω)
(

1 + βa(ω)
)− 1

β − λq(ω) = 0.

This simplifies to

1 + βa(ω) =
( p(ω)
λq(ω)

)β

a(ω) =
1
β

[( p(ω)
λq(ω)

)β
− 1
]
.

Since uβ(a(ω)) is a utility function, we know that it is strictly increasing in a(ω). Also,

since q(ω) is always non-negative then we will attain a maximum for the objective
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function when this single constraint is binding. This gives us

∫
q(ω)a(ω)dω =

∫
q(ω)

[ 1
β

[( p(ω)
λq(ω)

)β
− 1
]]
dω = 0

1
β

[∫
q(ω)

( p(ω)
λq(ω)

)β
dω − 1

]
= 0

∫
q(ω)

( p(ω)
λq(ω)

)β
dω = 1

∫
q(ω)

(p(ω)
q(ω)

)β
dω = λβ

λ∗ = Eq[(p/q)β]1/β.

Plugging this into a(ω), we then have

a∗(ω) =
1
β

[( p(ω)
EQ[(P/Q)β]1/βq(ω)

)β
− 1
]

= EPSS(β)(P ||Q).

The proof for the discrete case is similar (cf. Jose, Nau & Winkler 2008). �

Proposition 3.2.5. For all P,Q ∈P and β ∈ R, EPSP (β)(P ||Q) ≥ EPSS(β)(P ||Q).

Proof. This follows from the fact that both expected scores are solutions to the op-

timization problem: maxx EP [uβ(x)] + λEQ[−x], with the power score fixing λ at 1.

On the other hand, the pseudospherical score allows λ to change in a way such that it

minimizes the maximum expected utility. Hence, the result holds. �

As always, since β = 1 is a common point for the two families of functions, we

know that the equality holds for all measures P,Q ∈ P. Figure 3.4 clearly shows

this for two examples. The left plot shows how the expected score changes as we

move β when p = (1/3, 1/3, 1/3) and the baseline is q = (7/10, 2/10, 1/10), as given

in an earlier example; the right one illustrates the expected scores for a continuous

assessment P = N(0, 1) and baseline Q = N(1, 1).
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Figure 3.4: Expected score for various values of β

3.3 An Application in Finance

In many instances, it is difficult to single out the risk neutral supporting distribution

Q that supports the market prices. For example, consider prices posted in a prediction

where the bid-ask spread is wide. In this instance, the most that we can say is that the

risk neutral supporting distribution lies in this interval. Hence, instead of a singleton

Q, we may have to deal with some set Q that contains the risk-neutral distribution.

This set is generally broad and the only typical constraint for this set is that it is non-

empty and convex. The first is a natural requirement while the latter follows from the

no arbitrage principle. Recently, several papers have studied the connection between

maximizing expected utility and minimizing divergence in this context. (e.g. Fritelli

2000, Goll and Ruschendorf 2001, Delbaen et al 2002) Most of these however have

focused on the exponential utility for which the dual problem is associated with the

inverse Kullback-Leibler divergence.

Here we will show that the duality holds in this setting as well for the two paramet-

ric families that we have introduced. For ease of discussion, we focus on the discrete

case. We note that the continuous version also holds. A more detailed discussion of

this topic and further references can be found in Nau et al. (2007, 2009).

Again, we consider a risk-averse individual with utility function uβ whose belief

about the market is represented by the distribution p and who invests in a contin-
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gent claims market whose set of risk neutral distribution lies in the set Q. If we let

x ∈ A = Rn be the vector of monetary payoffs, then the decision maker has a util-

ity vector uβ(x) = (uβ(x1), . . . , uβ(xn)) which contains the utility she will receive for

each possible outcome. Next, we note that we can characterize the set Q by some

m × n matrix Q = {qij}. The rows of this matrix contains the extremal risk neutral

distributions of the set Q, while the qij entry refers to the probability that the jth

state occurs under the ith risk neutral distribution. This characterization is possible

since any point in this convex set can be represented as a convex combination of the

extremal points of the set.

For Model S, we consider again a single time period in which the decision maker

wants to find the vector of payoffs x that maximizes her subjective expected utility

subject to a self-financing constraint. In the complete market case, we represent this

constraint by Eq[x] ≤ 0. In this setting, we write this as Qx ≤ 0, which means

that market’s expected payoff vector under all extremal risk neutral distribution is

non-positive. This implies that the incentive compatibility constraint holds for every

possible distribution in the set Q. Mathematically, we can write this as:

Model S: USβ (p||q) ≡ max
x∈Rn

Ep[uβ(x)] subject to Qx ≤ 0. (3.27)

Next for Model P, we can consider this as a two-period consumption problem where

the decision maker chooses a vector x of future payoffs that she can purchase using

funds during the current period. This can be written as

Model P: UPβ (p||q) ≡ max
y∈Rn,x∈Rn

Ep[uβ(x)]− y subject to Qx ≤ y1. (3.28)

Under this setting, the constraint implies that the market will never give the decision

maker an expected payoff larger than what she expects to gain from the prevailing

market rate. Later on, we will see that the optimal solution for this problem would

yield y∗ = Eq[x∗], which is the cost of buying x∗ at time-0 prices.

Having set-up these problems, our next proposition tells us that the duality holds

not only for exponential utility but for the entire spectrum of β for these two families

of divergence measures.
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Proposition 3.3.1. (a) In an incomplete, single-period market, the dual problem for

Model S is the minimization of the pseudospherical divergence, i.e.

DS
β (p‖Q) ≡ min

z∈4k
DS
β (p‖zTQ). (3.29)

(b) In an incomplete, two-period market, the dual problem for Model P is the mini-

mization of the power divergence, i.e.

DP
β (p‖Q) ≡ min

z∈4k
DP
β (p‖zTQ). (3.30)

Proof. Denote the solutions to Models S and P by xS
β(p||q) and xP

β (p||q) respectively,

with the ith elements xS
β,i(p||q) and xP

β,i(p||q). Also, letz ∈ 4k denote a vector of

weights, so that zTQ is a mixture of the rows of Q, which is an element of the convex

polytope Q of risk neutral distributions.

For part (a), Lagrangian relaxation is applicable because the primal problem has a

strictly concave, continuously differentiable objective function and linear constraints.

Let λ denote the vector of Lagrange multipliers associated with the constraints Qx ≤ 0.

The Lagrangian relaxation of Model S is then minλ∈Rk+ L(λ) where

L(λ) = max
x∈Rn

Ep[uβ(x)]− λTQx. (3.31)

The Lagrangian L(λ) is an unconstrained maximum of a continuously differentiable

concave function, so it can be solved for x in terms of λ by setting ∇(Ep[uβ(x)] −
λTQx) = 0, which yields

x =
1
β

((
p

λTQ

)β
− 1

)
, (3.32)

whence

L(λ) = Ep

[
1

β − 1

[(
p

λTQ

)β−1

− 1

]]
− λTQ

[
1
β

[(
p

λTQ

)β
− 1

]]

=
1

β − 1

[
Ep

[(
p

λTQ

)β−1
]
− 1

]
− 1
β

[
Ep

[(
p

λTQ

)β−1
]
− 1T (λTQ)

]
.(3.33)

In the optimal solution λ∗, where the constraints are satisfied, the second term will be

zero, which implies

1T (λ∗TQ) = Ep

[(
p

λ∗TQ

)β−1
]

(3.34)
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and consequently

L(λ∗) =
1

β − 1

(
Ep

[(
p

λ∗TQ

)β−1
]
− 1

)
. (3.35)

Now let z∗ = λ∗/1Tλ∗ be the probability distribution that is obtained by normalization

of the optimal Lagrange multipliers λ∗. Then it follows from (21) that:

z∗TQ =
λ∗TQ

Ep[(p/λ∗TQ)β−1]
. (3.36)

The pseudospherical divergence between p and z∗TQ can therefore be expressed in

terms of λ∗ as:

DS
β (p‖z∗TQ) =

(Ep[(p/z∗TQ)β−1])1/β − 1
β − 1

=
(Ep[(Ep[(p/λ∗TQ)β−1](p/λ∗TQ))β−1])1/β − 1

β − 1

=
(Ep[(p/λ∗TQ)β−1])(β−1)/β(Ep[(p/λ∗TQ)β−1])1/β − 1

β − 1

=
1

β − 1

(
Ep

[(
p

λ∗TQ

)β−1
]
− 1

)

= L(λ∗), (3.37)

which is the optimal objective value of the primal problem. Furthermore z∗ = λ∗/1Tλ∗

must also minimize DS
β (p‖zTQ) over all z ∈ 4k, because if there were some other

z∗∗ ∈ 4k such that DS
β (p‖z∗∗TQ) < DS

β (p‖z∗TQ), then it would be possible to find

some λ∗∗ ∈ Rk+ proportional to z∗∗ such that z∗∗TQ = λ∗∗TQ/(Ep[(p/(λ∗∗TQ))β−1]).

By construction this λ∗∗ would satisfy Ep[(p/λ∗∗TQ)β−1]− 1T (λ∗∗TQ) = 0, implying

L(λ∗∗) = DS
β (p‖z∗∗TQ), and it would follow that L(λ∗∗) < L(λ∗), contradicting the

assumption that λ∗ was optimal.

For part (b), the problem of finding the feasible risk neutral distribution that

minimizes the power divergence of order β:

min
z∈4k

DP
β (p‖zTQ), (3.38)

is equivalent to the Lagrangian problem minλ∈4k L(λ), where L(λ) = maxx∈Rn Ep[uβ(x)]−
λTQx is the same Lagrangian that was used in the proof of part (a) to minimize the
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pseudospherical divergence, except that here λ is constrained to be in the simplex,

not just the non-negative orthant (λ ∈4k rather than λ ∈Rk+), which requires a La-

grange multiplier for the constraint 1Tq = 1 in addition to the m Lagrange multipliers

for the constraints Aq ≥ 0. The latter divided by the former are equal to the op-

timal values of the decision variables in Primal Problem P multiplied by −β. The

power divergence is minimized by the same risk neutral distribution q∗ = z∗TQ that

minimizes the pseudospherical divergence (for the same p, β and Q), because they

are both monotonic functions of Ep[(p/q)β−1]. The optimal value of λ is a unit vec-

tor selecting the largest element of Qx. Let z denote this largest element. Then

minλ∈4k maxx∈Rn Ep[uβ(x)] − λTQx is equivalent to maxx∈Rn Ep[uβ(x)] − z subject

to Qx ≤ z1. �

This result shows that the duality between maximizing expected utility and mini-

mization of entropy holds for a wider class of functions. In particular, the reliance on

exponential utility in many models can be relaxed to cover a wide class of commonly-

used utility functions or family of divergence measures. A simple illustration in finance

of how different entropy functions affect a decision problem can be seen in Nau et al.

(2009). A geometric illustration is also provided.
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Chapter 4

Incorporating Sensitivity to Distance in
Probabilistic Forecast Evaluation

4.1 Motivation for Sensitivity to Distance

In certain instances, the decision situation requires probability assessments for ordered

(or ranked) events. Consider a betting situation wherein probabilities are assessed for

three possible outcomes in a soccer match (win, tie, loss). We say that the outcomes

are ordered in the sense that a tie is considered worse than a win but better than a

loss. In cases like these, scoring rules have been developed to take into consideration

a notion called sensitivity to distance. This implies that probability assessments that

are “closer” to the event that occurs based on some definition of distance are given

higher scores. In the soccer example, if the team actually loses (third category) an

assessment of (0.1, 0.4, 0.5) would be given a better score than (0.3, 0.2, 0.5) because

the first one differs from the second one by having more weight on the event closer

(tie) to the actual outcome.

Most scoring rules studied in the literature and used in practice do not take into

account the ordering of events and this notion of being sensitive to distance. A notable

exception to this is the ranked probability score (RPS) introduced by Epstein (1969)

in the context of weather forecasting. It is strictly proper (thereby encouraging honest

reporting) and gives higher scores for assessments that are “closer” to the event that

occurs based on a particular concept of distance (thereby taking the order of events

into consideration).

Similar to the standard scoring rules, there also exists a default baseline distribution

for the RPS from which assessments are measured. Unlike the standard symmetric

scoring rules which assign a uniform baseline distribution, scoring rules for ranked
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categories provide the lowest expected score when a probability of 1/2 is provided

for the two most extreme states with zero probabilities for all intermediate states.

In certain instances this is not a reasonable baseline. In a soccer game wherein a

top ranked team plays an amateur team, it may not seem reasonable to use a 50-50

reference distribution on winning and losing.

The focus of this chapter is threefold. First, we develop other strictly proper

scoring rules that take into account the notion of sensitivity to distance. Second, we

discuss how the notion of a baseline distribution could be incorporated in the context

of sensitive to distance scoring rules. Finally, we address the issue of how these scores

could be extended to the continuous case.

4.2 Generating Sensitive to Distance Rules

Consider a countable state space Ω with elements that have a predetermined ordering.

When |Ω| ≥ 3, it may be of interest to study forecasts which are considered to be “more

distant” than others after the uncertainty has been resolved and the actual state is

known. First, we define what makes one forecast “more distant” from a particular

state than another forecast.

Definition 12. A forecast r’ is said to be more distant from event j than another

forecast r if

R′i ≥ Ri for i = 1, . . . , j − 1,

R′i ≤ Ri for i = j, . . . , n− 1
(4.1)

where Ri =
∑

j≤i ri and R′i =
∑

j≤i r
′
i.

To illustrate this, consider forecasts provided for six possible states of the world,

say the change in the price of a Microsoft stock falls in one of the following categories:

below −10%, −10% to −5%, −5% to 0%, 0% to 5%, 5% to 10%, above 10%. If we

observe that the actual change is 3% (i.e., event 4) then we might feel that forecasts

that put higher probabilities on event 4 and events close to it should have higher scores.
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For example, if we consider forecast A = (0.1, 0.3, 0.2, 0.1, 0.1, 0.2) in Figure 4.1,

then we note that forecast B = (0.05, 0.15, 0.33, 0.17, 0.1, 0.2) should have better

score than A since A is more distant than B with respect to event 4. Here we

see that the probability assigned to events 1 and 2 have decreased from A to B,

and this probability has been transferred to events 3 and 4. Similarly, forecast C =

(0.1, 0.3, 0.2, 0.15, 0.2, 0.05) is closer to event 4 than A since we have probability mass

being moved toward the actual event from states on the right hand side of that event.

Shifts of probability masses from both sides are also allowed. Forecast D =

(0.05, 0.15, 0.33, 0.22, 0.2, 0.05), which results from performing the shifts done in fore-

cast B and then in forecast C, is also less distant from event 4 when compared to fore-

cast A. Caution though has to be exercised when changes of probability masses occur

on both sides of the actual event. Notice that forecast E = (0.05, 0.3, 0.2, 0.1, 0.15, 0.2)

shows a shift of mass from the most distant state to an adjacent state of the actual

event, but forecast E fails to satisfy the definition because the shift is to a state on the

other side of the actual event.

When there are only two states of interest, the distance between forecasts be-

comes trivial and the use of any strictly proper scoring rule would give a higher score

to forecasts with greater probability on the actual event. Coherence takes away the

notion of “sensitivity to distance” since probability assessments are limited to a single

degree of freedom. But when n ≥ 3, scores may differ depending on how probabilities

are assigned to the different states that did not occur. Hence, we can now define what

it means for a scoring rule to respect this notion of forecasts being less distant than

others to the actual event and therefore to be sensitive to distance.

Definition 13. A scoring rule S is said to be sensitive to distance if Sj(r) > Sj(r′)

whenever r′ is more distant than r for j = 1, . . . , |Ω|.

A characterization for strictly proper scoring rules that are sensitive to distance

has been provided by Nau (2007).

The earliest scoring rule in the literature with this property is the ranked proba-
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Figure 4.1: Examples of forecasts more distant from an event

bility score (RPS), which was introduced by Epstein (1969):

RPSj(r) =
3
2
− 1
n− 1

n−1∑

i=1

[
R2
i + (1−Ri)2

]− 1
n− 1

n∑

i=1

|i− j|ri. (4.2)

Murphy (1971) points out that (4.2) can be simplified to

RPSj(r) = −
j−1∑

i=1

R2
i −

n−1∑

i=j

(1−Ri)2. (4.3)

The motivation for (4.3) is that for each state, we can divide the state space with n−1

dividers between adjoining states and score each of the n − 1 resulting dichotomies.

The score attained when these scores are added is strictly proper and now sensitive to

distance.

There is nothing particularly special about the quadratic score, however. If S is

any strictly proper binary scoring rule, then we can generate a new score S̃ defined by

S̃j(r) =
j−1∑

i=1

S2(Ri, 1−Ri) +
n−1∑

i=j

S1(Ri, 1−Ri). (4.4)
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Proposition 4.2.1. The scoring rule S̃ given by (4.4) is strictly proper.

Proof. The expected score is

EpS̃(r) =
n∑

j=1

pj

[ j−1∑

i=1

S2(Ri, 1−Ri) +
n−1∑

i=j

S1(Ri, 1−Ri)
]

=
n∑

i=1

PiS1(Ri, 1−Ri) + (1− Pi)S2(Ri, 1−Ri). (4.5)

For each i in (4.5), the maximizing solution can be obtained from the following system

of equations:
∑

k≤i
pk =

∑

k≤i
rk and

∑

k>i

pk =
∑

k>i

rk.

Iteratively, we get pi = ri for all i. Hence, p = r is a maximizing solution for the

aggregate problem. To show that it is unique, let r′ be a maximizing solution distinct

from p. Let m be the first state for which r differs from p. Then PmS1(R′m, 1−R′m) +

(1−Pm)S2(R′m, 1−R′m) is strictly lower than PmS1(Pm, 1−Pm)+(1−Pm)S2(Pm, 1−Pm)

since S is strictly proper, while the other terms in the summation can do no better.

Hence, r′ can not be a maximizing solution. �

To illustrate the form this new score generated by (4.4) would take, consider the

logarithmic score. When event j occurs,

S̃j(r) =
j−1∑

i=1

log(1−Ri) +
n−1∑

i=j

logRi.

When n = 4, for example, the expected score is:

ES̃ =




p1

p2

p3

p4




T 


logR1 logR2 logR3

log(1−R1) logR2 logR3

log(1−R1) log(1−R2) logR3

log(1−R1) log(1−R2) log(1−R3)







1

1

1

1



.

Similar to the RPS, this scoring rule is sensitive to distance. Consider two distri-

butions r and r′ which only differ in two states. For example, let a < b ≤ j, with
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r′a = ra + ε and r′b = rb − ε, where ε > 0. This implies that r′ is more distant than r if

state j occurs. Now, if we let Hj(r, r′) = S̃j(r) − S̃j(r′), the improvement in score in

moving from r′ to r, we then have

Hj(r, r′) =
b−1∑

i=a

log(1−Ri)−
b−1∑

i=a

log(1−Ri − ε) =
b−1∑

i=a

log
(1−Ri)

(1−Ri − ε) .

Note that (1 − Ri)/(1 − Ri − ε) > 1, so that log[(1 − Ri)/(1 − Ri − ε)] > 0 for each

of the terms in the summation. Therefore, Hj(r, r′) > 0. A similar argument can be

made when a > b ≥ j. Thus, as shown more generally in Proposition 4.2.2, the rule is

sensitive to distance.

Proposition 4.2.2. Let S̃ be a ranked scoring rule generated from (4.4) for a strictly

proper binary scoring rule S. Then S̃ is sensitive to distance.

Proof. Using the notation from the log example, we have the following form for

Hj(r, r′) when a < b ≤ j, with r′a = ra + ε and r′b = rb − ε :

Hj(r, r′) =
b−1∑

i=a

S2(Ri, 1−Ri)− S2(Ri + ε, 1−Ri − ε).

When a > b ≥ j, with r′a = ra + ε and r′b = rb − ε,

Hj(r, r′) =
a−1∑

i=b

S1(Ri, 1−Ri)− S1(Ri − ε, 1−Ri + ε).

Because S is strictly proper, S1(r, 1− r) must be increasing in its first argument, while

S2(r, 1 − r) must be increasing in the second. Hence, Hj must be positive in both

cases. Finally, any distribution which is more distant with respect to an event j can

be created through a step-by-step transfer of probability mass further away from the

event of concern. Hence, S̃ is sensitive to distance. �

The construction given by (4.4) allows us to have greater flexibility in the type

of scoring rule that we can use in problems with ranked categories. It provides an

extensive set of strictly proper scoring rules S̃ that are sensitive to distance.
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In addition, Propositions 4.2.1 and 4.2.2 can be extended to allow for the use of

a different scoring rule for every dichotomy i, thus increasing the generality of the

results. Hence, if {S(i)}i=n−1
i=1 is any set of strictly proper binary scoring rules, then

S̃j(r) = −
j−1∑

i=1

S
(i)
2 (Ri, 1−Ri)−

n−1∑

i=j

S
(i)
1 (Ri, 1−Ri). (4.6)

will also be a strictly proper scoring rule that is sensitive to distance. These results

can be proven in same way as the previous propositions, since the fact that identical

scoring rules were used for each i was never used.

A possible application of (4.6) is when S(i) = aiS+bi. Under this scheme, we could

choose appropriate parameters {ai, bi}n−1
i=1 such that greater (or less) weight could be

placed on more extreme events. We note though that the choice of same S for every i

provides sufficient flexibility in most cases.

The rules generated by (4.4) take into consideration the ordering of events and

are sensitive to distance, but their sensitivity to distance is highly dependent on the

way by which we define the notion of “more distant.” For example, Murphy (1970)

suggested a notion of distance based on symmetric sums, i.e. we say that r′ is more

distant than another forecast r from event j if

C ′i :=
j+i∑

k=j−i
r′i ≤

j+i∑

k=j−i
ri =: Ci (4.7)

for all i. Sensitivity to this notion of difference would imply that if (4.7) is satisfied

for every j then Sj(r′) < Sj(r). No scoring rule has been developed for this notion of

distance.

4.3 Incorporating a Baseline Distribution

In the previous chapter, we discussed the notion of incorporating a non-uniform base-

line distribution and how it could be of use in many applications. In the case of a

standard (non-ranked) symmetric strictly proper scoring rule such as the quadratic,
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Proposition 3.1.1 tells us that a uniform distribution provides the lowest possible ex-

pected score. In contrast, the RPS attains the lowest expected score when probabilities

of one-half are assigned to the two extreme events in the ordered space (with zero on

all other events). An interpretation for this is that these distributions can be viewed

as the “least informative” beliefs that one could have in the two situations, where the

difference between the two is that with the RPS, we care about sensitivity to distance.

Proposition 4.3.1 shows that the baseline distribution for the RPS holds for a wide

class of strictly proper sensitive-to-distance scoring rules.

Proposition 4.3.1. For a scoring rule S̃ generated from (4.4) using a symmetric,

strictly proper scoring rule S, the expected score under honest reporting is minimized

when r = p = (0.5, 0, . . . , 0, 0.5).

Proof. From (4.5), the expected score EpS(r) is the sum of expected scores using S

for n − 1 dichotomies. Because S is symmetric, the expected score when Ri = Pi

is minimized at Pi = 0.50. Setting p = (0.5, 0, . . . , 0, 0.5) yields Pi = 0.5 for i =

1, . . . , n− 1; so each of the n− 1 expected scores is minimized individually. Therefore,

the overall expected score is minimized. �

When there is a reference distribution, or baseline distribution, that represents the

notion of “least informative” in a given situation, it is useful to be able to scale a

scoring rule such that it attains a minimum expected score for honest reporting at this

reference distribution. One way to address this issue is by making strictly proper rules

“asymmetric” by relating them to a baseline distribution while retaining the property

of strict propriety, as done in the previous chapter for unordered spaces.

Proposition 4.3.2. For a scoring rule S̃ generated from (4.4) using an asymmetric

strictly proper binary scoring rule S with baseline (b, 1 − b), b /∈ {0, 1}, the expected

score under honest reporting is minimized when r = p = (b, 0, . . . , 0, 1− b).

Proof. When r = p = (b, 0, . . . , 0, 1− b), Pi = b for i = 1, . . . , n− 1, which minimizes

the expected score in the same manner as the proof in Proposition 4.3.1. �
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This is slightly less restrictive in the sense that the extreme states need not have a

value of 0.5. Unfortunately in many applications, having a baseline which is always 0 in

the middle states is quite unrealistic. However, using (4.6), we can create similar scores

for ordered state spaces which allow a wider set of possible baseline distributions. In

particular, by using the families of power and pseudospherical scores, we can create

new scoring rules using (4.6) that are strictly proper, are sensitive to distance, and

have a baseline distribution that is not necessarily uniform.

Let q = (q1, q2, . . . , qn) be a baseline distribution that is strictly positive (i.e.,

qi > 0 for i = 1, ..., n). Note that if there exists a state for which the baseline is 0,

we can easily combine this state with an adjacent state. If the baseline is 0, then

every assessment for this state must be 0 as well; otherwise the spirit of a baseline

distribution is violated.

We can write the ranked power and pseudospherical scores with baseline q as

follows, where SP (β) and SS(β) are the weighted power and pseudospherical scores in

(3.9) and (3.11) for a dichotomy, Rj = (Rj , 1−Rj), and Qj = (Qj , 1−Qj):

S̃P (β)(r||q) =
j−1∑

i=1

S
P (β)
2 (Ri||Qi) +

n−1∑

i=j

S
P (β)
1 (Ri||Qi) (4.8)

and

S̃S(β)(r||q) =
j−1∑

i=1

S
S(β)
2 (Ri||Qi) +

n−1∑

i=j

S
S(β)
1 (Ri||Qi). (4.9)

Figure 4.2 shows plots for some special cases of (4.8) and (4.9) overlayed with

the cases which do not have a baseline distribution nor are sensitive to distance. We

consider the quadratic, spherical, and logarithmic scores as a function of r2 for a

three-event example with r =(0.4, r2, 0.6 − r2) and j = 1. In each case, four scores

are considered: the standard score from (2.14) or (2.13), the ranked score (4.4) using

the generators (2.14) or (??), the standard score from (3.9) or (3.11) with baseline

q = (0.3, 0.6, 0.1), and the ranked score from (4.8) or (4.9) with the same baseline.

These plots illustrate how scores can differ when a ranked score is used as opposed to a

standard (non-ranked) score and when a baseline different from the default baseline is
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considered, and they also demonstrate that the scores generated by different values of β

have different properties. For example, the standard quadratic and spherical scores are

maximized when r2 = 0.3, the value for which r2 = r3. The corresponding scores with

the baseline are maximized near r2 = 0.5. The logarithmic scores with and without

the baseline are constant in r2 since they depend on r only through r1, although they

differ from each other because the score with the baseline also depends on q1. All of

the ranked scores, with or without the baseline, are increasing in r2; with j = 1 and r1

fixed, the ranked scores are higher as more probability is shifted to event 2, the event

closest to event 1.

Note that the shapes of the curves in Figure 4.2 and the relationships among

these curves differ not only depending on whether the score is ranked or whether a

non-default baseline is used, but also for the different families of scoring rules (different

values of β). Of course, this is a single example, and the curves will differ as the

details change. It is clear, however, that considering sensitivity to distance and making

comparisons with a non-default baseline can significantly change the nature of the

scores.

Proposition 4.3.3. The scoring rule S̃ generated in (4.8) or (4.9) by the weighted

power or pseudospherical scoring rule attains a minimum possible expected score for

honest reporting if and only if p = q.

Proof. Given a fixed q, the expected scores for honest reporting can be written as

ES̃P (β)(p||q) =
n∑

j=1

pj

[ j−1∑

i=1

S
P (β)
2 (Pi||Qi) +

n−1∑

i=j

S
P (β)
1 (Pi||Qi)

]

=
n∑

j=1

EPj [(Pj/Qj)β]− 1
β(β − 1)

and

ES̃S(β)(p||q) =
n∑

j=1

pj

[ j−1∑

i=1

S
S(β)
2 (Pi||Qi) +

n−1∑

i=j

S
S(β)
1 (Pi||Qi)

]

=
n∑

j=1

EPj [(Pj/Qj)β]1/β − 1
β − 1

,
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Figure 4.2: Scores as a function of r2 for different scoring rules when

r = (0.4, r2, 0.6− r2) and j = 1
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where Pj = (Pj , 1 − Pj) and Qj = (Qj , 1 − Qj). For every j, the terms in these

summations are non-negative since the power and pseudospherical divergences are

non-negative. Hence, ES̃ ≥ 0. Also, when p = q, these terms are 0, so they attains

a minimum when p = q. The uniqueness follows from the fact that the divergences

attain a minimum only when Pi = Qi for every i. �

A good way to illustrate this is by looking at the shape of the contours of these

new ranked scores in a simplex. Figure 4.3 shows the different expected score contours

when n = 3 for the quadratic scoring rule, the RPS, and the power scoring rule with

β = 2 and baselines (1/3, 1/3, 1/3) and (7/10, 2/10, 1/10). The quadratic score attains

a minimum expected score at the point (1/3, 1/3, 1/3), similar to the ranked power

scoring rule centered at the same point. Unlike the quadratic score, however, the

latter score is only symmetric along the middle state since this score is sensitive to

distance. For the RPS, Figure 4.3 shows that a minimum is attained at (1/2, 0, 1/2).

The two plots at the bottom of Figure 4.3 indicate how the expected score changes

when a baseline other than (1/2, 0, 1/2) is selected. The minimum expected score for

the ranked power scoring rule is attained at the baseline distribution, as shown in

Proposition 4.3.3. Though the baseline is restricted to be strictly positive, we can

approximate the RPS by choosing a baseline (1/2 − ε/2, ε, 1/2 − ε/2) and making

ε > 0 arbitrarily small. Though the ranked power and pseudospherical families

provide sufficient richness for all practical purpose, one may ask whether there exists a

much larger set of ranked scoring rules which can be assigned a pre-specified baseline.

The response to this is yes. Let f be any function on the unit square such that:

(1)|f(x; y)| < ∞ for all (x; y) ∈ [0, 1]2, (2)f(x; y∗) is strictly convex in x for any fixed

y∗ ∈ (0, 1) and attains a minimum at x = y∗; and (3) given any fixed y∗ ∈ (0, 1) and

for every x ∈ [0, 1], f has a subgradient f ′ at x. Using the Schervish representation

given in (2.20) and (2.21), we can generate a strictly proper binary scoring rule for a
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Figure 4.3: Expected score contours for the regular quadratic score [top left],

the RPS [top right] and the ranked power score with β = 2 and baselines

(1/3,1/3,1/3) [bottom left] and (7/10,2/10,1/10) [bottom right]
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fixed baseline (q, 1− q) as follows:

Sf1 ((r, 1− r)||(q, 1− q)) = f(r, q) + (1− p)f ′(r, q) (4.10)

Sf2 ((r, 1− r)||(q, 1− q)) = f(r, q)− pf ′(r, q). (4.11)

Proposition 4.3.4. The scoring rule

S̃f (r, ej ||q) =
j−1∑

i=1

Sf2 (Ri||Qi) +
n−1∑

i=j

Sf1 (Ri||Qi) (4.12)

generated using the binary scoring rule Sf from (4.10) and (4.11) is strictly proper,

sensitive to distance and attains a minimum possible expected score for honest reporting

if and only if p = q.

Proof. The proof for strict propriety and sensitivity to distance is analogous to the

proofs for Propositions (4.2.1) and (4.2.2). To show the last part, we write the expected

scores for honest reporting given a fixed q as follows, where Pj = (Pj , 1 − Pj) and

Qj = (Qj , 1−Qj):

EpS̃
f (p||q) =

n∑

j=1

pj

[ j−1∑

i=1

Sf2 (Pi||Qi) +
n−1∑

i=j

Sf1 (Pi||Qi)
]

=
n∑

j=1

[
PjS

f
1 (Pj ||Qj) + (1− Pj)Sf2 (Pj ||Qj)

]

=
n−1∑

j=1

f(Pj , Qj).

Since f is minimized when Pj = Qj , EpS̃
f (p||q) attains a minimum when p = q.

Uniqueness follows from the strict convexity of f . �

Under Proposition 4.3.4, the ranked power and pseudospherical scores become spe-

cial cases. For example, if f is the power divergence given by (3.12) then the scoring

rule given by (4.12) is the ranked power rule. Similarly, if the pseudospherical diver-

gence given by (3.13) is used then the score becomes the ranked pseudospherical scoring

rule in (4.9). Though (4.12) provides a plethora of possibilities, for most practical pur-

poses the ranked power and pseudospherical scoring rules offer sufficient richness. In
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addition, the scores used to generate these rules have several interesting properties as

mentioned in the previous chapter.

4.4 Continuous Analogues

Suppose that the state space Ω ⊆ R is no longer countable, and the appropriate

measure µ is Lebesgue. Moreover, suppose forecasts now are taken from P, a non-

empty set of Borel probability measure on Ω. Continuous versions of the previous

scores can now be created. For the ranked probability score, Matheson and Winkler

(1976) suggested a continuous analogue, which they referred to as the cumulative

ranked probability score (CRPS). Suppose that an assessor provides a forecast F ∈P

and x is the outcome that is observed then this new score is given by

CRPS(F, x) = −
∫ ∞
−∞

(F (ω)− 1{ω ≥ x})2dω (4.13)

= −
∫ x

−∞
F (ω)2dy −

∫ ∞
x

(1− F (ω))2dy

where 1 is the indicator function. The intuition of (4.14) is the same as the old score

where the space is divided into two regions - the ones which are ordered below the

event observed and those above it. In this case, the CRPS hinges on the use of the

quadratic score, as does the RPS, but there is nothing particularly special about it,

leading us to the following generalization.

Let S be a strictly proper binary scoring rule. For simplicity, we consider only

those functions S which are continuously differentiable and integrable with respect to

P. These may limit the set of possible functions but this is wide enough to allow for

great flexibility in most applications. A new continuous ranked scoring (CRS) rule for

the continuous case can then be generated by

CRS(F, x) =
∫ x

−∞
S2(F (ω), 1− F (ω))dω +

∫ ∞
x

S1(F (ω), 1− F (ω))dω.(4.14)

Similar to the CRPS, the CRS can be viewed, as Hersbach (2000) puts it, as a ranked

score similar to (4.4) with “an infinite number of classes, each of zero width.” Moreover
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we can see that this extension of the discrete case is also strictly proper. To show this,

suppose R is the reported distribution and P is the measure by which we compute the

expected score. Then, using Fubini’s Theorem, we can write the expected score as

E[CRS] =
∫ ∞
−∞

[ ∫ x

−∞
S2(R(ω), 1−R(ω))dω +

∫ ∞
x

S1(R(ω), 1−R(ω))dω
]
dP (ω)

=
∫ ∞
−∞

∫ ∞
−∞

(
S2(R(ω), 1−R(ω))1{ω ≤ x}

+S1(R(ω), 1−R(ω))1{ω ≥ x}
)
dωdP (x)

=
∫ ∞
−∞

P (z)S2(R(z), 1−R(z)) + (1− P (z))S1(R(z), 1−R(z))dz

=
∫ ∞
−∞

EP [S(R(z), 1−R(z))]dz.

Since S is strictly proper, the expectation is maximized when P (u) = R(u) for every

u, thereby encouraging truth-telling.

As an illustration, consider the power scoring rule with parameter β. The con-

tinuous ranked power score CRSP (β)S for a report R under a baseline Q is given

by

CRSP (β)S =
1

β(β − 1)

{∫ x

−∞

[β(1−R(ω))
1−Q(ω)

− (β − 1)
∫ ∞
−∞

(1−R(x))β

(1−Q(x))β−1
dx− 1

]
dω

+
∫ ∞
x

[βR(ω)
Q(ω)

− (β − 1)
∫ ∞
−∞

R(x)β

Q(x)β−1
dx− 1

]
dω
}
,

and its expected score is given by:

E[CRSP (β)S] =
∫ ∞
−∞

EP [SP (β)(R(y), 1−R(y)||Q(y), 1−Q(y))]dy.

This implies that E[CRSP (β)S] is maximized only when P (u) = R(u) for all u and

moreover, among the set of all possible P ∈P, the expected score E[CRSP (β)S] attains

a lowest possible score when P = Q. Hence, the use of the power (or pseudospherical)

scoring rule leads to an asymmetric version for this new score, which attains a min-

imum expected score for truthful reporting only when the assessor’s belief coincides

with the baseline.

Similarly, the new rules that we had generated also satisfies some notion of sensi-

tivity to distance. The following provides the extension of the definition of closeness

and distance to the continuous setting.

74



www.manaraa.com

Definition 14. A distribution F is said to be more distant from an outcome x than

another forecast G (with F 6= G) if

F (y) ≥ G(y) if y < x

F (y) ≤ G(y) if y ≥ x
. (4.15)

Under this definition, the scoring rule defined by (4.14) is sensitive to distance:

If F is more distant from an outcome x than another forecast G then CRS(F, x) ≤
CRS(G, x) for all x. The argument for this result hinges on the discretization of the

state space into small intervals and using the proof of Proposition 4.2.2. Once, x is

fixed and a partition is selected, we can consider two distributions which only differ in

area in two intervals on the same side of x. Since S is strictly proper then the difference

H should be strictly positive, implying an improvement. The sensitivity to distance is

then guaranteed by the fact that the result holds for every x and for every partition of

Ω, which implies that under a continuity condition, CRS(F, x) ≤ CRS(G, x) for all x.

Under this definition, the distributions may coincide as many times as they want

but once a distribution crosses the other, it can coincide with the other distribution

but never cross it again. This is called the single upcrossing condition.

An issue that has been raised with respect to the CRPS which may be applicable

to these new scores is the lack of analytic closed-form solutions. (Gneiting and Raftery

2007) For example, the CRPS for a simple normal probability assessment with mean

µ and variance σ2 is given by

CRPSN(µ,σ2)(x) =
σ√
π
− (x− µ)(2Φ(z)− 1)− 2σφ(z),

where z = (x − µ)/σ is the standardized value of x, φ the density function of the

normal and Φ its distribution function. For more complicated functions S and many

distribution functions F , the forms may lead to some difficulties in evaluating the score.

In recent years, this problem has become less important with the growth of computing

power. Traditionally, numerical analysis tools such as quadrature techniques (Staël

von Holstein 1977, Unger 1985) have been suggested as a solution. Now, Monte Carlo

techniques could be applied easily to provide a quick and accurate estimate for these
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complicated integrals.

In the meteorological community, the CRPS has gained some popularity in practice

(e.g. Hersbach 2000; Candille and Talagrand 2005; Gneiting et al. 2005). In particular,

they cite that an advantage of this score is that it retains both strict propriety and the

ability of the RPS to take order into consideration without having to specify a set of

predefined classes, whose choice could greatly affect the results.
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Chapter 5

Scoring Quantile Assessment

In this chapter, we investigate another common method in assessing probabilistic in-

formation. In many instances, an assessor may simply be asked to provide specific

values for a distribution instead of an entire distribution. For example, a common

practice in decision and risk analysis is to ask an assessor to provide assessments for

the 5-50-95 or 10-50-90 percentiles (or equivalently, their 0.05-0.5-0.95 and 0.1-0.5-0.9

quantile assessments) rather than the entire predictive distribution. In this case, we

would like to use scoring rules to better assess the quality of quantile assessments that

are provided by an expert.

5.1 The Quantile Setting

5.1.1 Why New Tools are Needed

Again consider the state space Ω ⊂ R̄ associated with the random variable X of inter-

est. Moreover, let P be a convex class of Borel probability measures defined on Ω and

have finite moments of all order. Without loss of generality, we also assume that all

elements of P are strictly increasing in Ω. The results can be easily extended to the

non-decreasing case with some slight change of phrasing, but we focus on the strictly

increasing case for clarity of exposition.

In principle, quantile assessment can be viewed as the inverse of probability fore-

casting. Suppose an assessor believes that X can be represented by some F ∈ P.

In the traditional probability assessment setting, the expert can report a cumulative

probability p corresponding to a fixed value ξ of X. But in the quantile assessment

protocol, the expert provides a quantile ξ corresponding to a fixed cumulative prob-

ability p. At the very start, one may be tempted to simply use the machinery that
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we have for probability assessment because of this connection. Unfortunately, our old

tools are inadequate in this set-up.

Proposition 5.1.1. A scoring rule that is strictly proper for probability assessment

does not encourage truth-telling in the quantile assessment setting for any p ∈ (0, 1).

Proof. The expected score for this assessor can be expressed as a weighted average of

the two possible scores, i.e. EFS = F (ξ)S1(p, 1− p) + (1− F (ξ))S2(p, 1− p). Since p

is fixed then so are S1(p, 1− p) and S2(p, 1− p). Therefore, the expert can maximize

her score by providing as much weight as she can on the larger of the two scores. If

S1(p, 1 − p) < S2(p, 1 − p), any ξ such that F (ξ) = 0 is optimal (i.e. any ξ equal or

below the infimum of the support of X). Similarly, any ξ such that F (ξ) = 1 is optimal

when S1(p, 1− p) > S2(p, 1− p). Thus, truth-telling is not encouraged. �

As we transition from fixing ξ to fixing p, then the old incentive for truthful re-

porting no longer exists. In this new set-up, a hedging strategy of providing extreme

forecasts can be obtained since the score does not provide any incentive for how close

you are to the event that occurs. It simply provides a score depending on whether

your assessment is above or below the event that is observed.

Practitioners have focused on a certain measure of “goodness” called calibration.

In quantile assessments with a fixed probability p, good calibration implies that the

proportion of random variables that are observed to have values below the assessed

quantiles should be as close as possible to p. For example, if an assessor is continually

asked for his 0.25 quantile assessment for various items, good calibration implies that

the observed value should be below her reported quantile approximately 25% of the

time. If she is asked for several quantiles then each one should match appropriately.

Given a series of quantile assessments (say p1 < p2 < · · · < pn) for N different

uncertainties, some measures that have been proposed for use are the following: (1)

Chi-Squared Measure or Mean-Squared Error: [Cooke 1991]

χ2 =
n∑

i=1

(rj −Npj)2

Npj
(5.1)
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and (2) Kolmogorov-Smirnov Statistic: [Wiper et. al. 1994]

KS = max{|rj/N − pj | : j = 1, 2, . . . ,m} (5.2)

where rj is the number of realizations that fall within the quantiles provided for pj−1

and pj . Wiper, et. al. (1994) provide the following justification for these scores:

Both the KS and the χ2-scores can be used to evaluate experts’ calibra-

tion. Both scores, when multiplied by a suitable information score, act as

(average) strictly proper scoring rules. (Wiper, et. al. 1994, p. 236)

If only calibration is of interest the expert can game the system and lose the flavor of

a strictly proper scoring rule as the following proposition shows.

Proposition 5.1.2. Let p = (p1, . . . , pn) with pi ∈ (0, 1) for i = 1, 2, . . . , n. For every

ε > 0, given a sufficient number of trials a forecaster providing quantile assessments

(associated with p) without any knowledge of the unknown quantity can always perform

well in terms of calibration (i.e., she can always be within ε units of the perfect score

for the calibration measures (5.1) and (5.2).

Proof. We begin by analyzing the case where pi is a rational number. In this case, ∃
integers si, ti such that pi = si/ti.

Now, fix an ε > 0 and consider the algorithm which provides an assessment of +∞
for si consecutive times and then an assessment of −∞ for ti − si consecutive times.

Then, the function |ri/n− pi| will attain a perfect calibration score for all multiples of

ti. Moreover, for n ∈ {(w−1) · ti+1, . . . , w · ti}, the maximum occurs at (w−1) · ti+si

for any w ∈ {n > 1|n ∈ Z}. Hence, there exists a wi such that

∣∣∣(wi − 1)ti + si
witi

∣∣∣ ≤ ε,

for all n > Ni := witi. To show the theorem holds, simply chooseN := max{N1, . . . , Nn}.
Next we note that since ε was chosen arbitrarily, then KS → 0. But it is a well

known fact that KS → 0 is equivalent to χ2 → 0. This implies that χ2 would also

approach the perfect score using this algorithm. Hence, there exists a sufficiently large
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n such that the other calibration score would always be within ε units of the perfect

score.

For the case of irrational numbers, simply choose a p̂i ∈ (0, 1) that is ε
4 units from

pi and use the previous result to find N such that the proportion will always be in

an ε
2 -neighborhood around p̂i, which implies that the score is within ε units of perfect

calibration for pi. �

In general, the proposition applies to many other goodness-of-fit statistic such as

a Bayes Factor or a Cressie-Read power statistic.

The main implication of Proposition 5.1.2 is that someone who knows very little

about X can achieve a good calibration score in a sequence of quantile assessments.

The proposition suggests a strategy that will work regardless of being able to observe

the events that occur. However, if the expert is allowed to monitor the results, she can

always adjust assessments sequentially to correct for miscalibration and obtain a better

score more quickly. For example, if p = 0.25 and the expert realizes that only 20% of the

observed values have been below her 0.25 quantiles, she can give extremely high values

for some assessed 0.25 quantiles to increase that percentage and bring it closer to 25%.

Calibration statistics provide no penalty for doing so, just as they provide no penalty

for the extreme reporting shown in Proposition 5.1.1. For probability assessment,

in contrast, attempts to improve calibration in this manner result in reductions in

expected score, although an assessor simply focusing on calibration can “game the

system” in a similar fashion as shown by Foster and Vohra (1998).

These results show that new measures are needed under this setting to correctly

incentivize probability assessors to provide truthful reports. Scoring rules developed

for probability assessments do not provide appropriate incentives.

5.1.2 Scoring Rules for Quantile Assessments

We begin by defining a scoring rule for the quantile setting.

Definition 15. A scoring rule for a p-quantile is an extended real value function
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Sp : Ω×Ω→ R̄ such that Sp(Ω, ·) is measurable with respect to F and quasi-integrable

with respect to P.

Similar to the conventional scoring rule, this function provides a score in the ex

post sense when an observation x = X(ω) materializes. In this instance, we say that

the scoring rule provides a score S(ξ, x) when x is observed and ξ is reported. We drop

the subscript p when there is no confusion about which value of p is being used. In an

ex ante sense, we can use these functions to compute the expected score of an assessor

with belief F ∈P as:

EFS(ξ) =
∫

Ω
S(ξ, x)dF (x). (5.3)

Now, define the set Π(ξ) ⊂P to be the set of all probability measures F ∈P which

have the property F (ξ) = p. Using this we can define what it means to be strictly

proper in the quantile setting.

Definition 16. A scoring rule for quantiles S is strictly proper relative to P if

EP [S(ξ)] ≥ EP [S(ξ′)] (5.4)

for all P ∈ Π(ξ).

The first explicit mention of a strictly proper scoring rule was only in Cervera and

Muñoz (1997). They suggested the following rule:

Sp(ξ, x) = pξ + (x− ξ)1{x ≤ ξ}+ g(x), (5.5)

where g is any arbitrary function solely dependent on x. Note that when g(x) =

−px+ h(x), then the scoring rule can be written as

S(ξ, x) = pξ + (x− ξ)1{x ≤ ξ} − px+ g(x) (5.6)

= −p(x− ξ) + (x− ξ)1{x− ξ ≤ 0}+ h(x)

=




−p(x− ξ) + h(x) if x− ξ > 0

(1− p)(x− ξ) + h(x) if x− ξ ≤ 0

= −p(x− ξ)+ − (1− p)(ξ − x)+ + h(x) (5.7)
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where z+ := max{z, 0}. This decomposition generally shows the behavior of the score

in the two major types of event that could occur - namely, the observed value being

either above or below the reported assessment. The maximization of this score

max
ξ
E[−p(x− ξ)+ − (1− p)(ξ − x)+ + h(x)]

is equivalent to the solution of the so-called newsvendor problem from the operations

management literature:

min
ξ
pE[(x− ξ)+] + (1− p)E[(ξ − x)+]− E[h(x)]

where p and 1− p are the underestimation and overestimation costs, respectively. The

optimal solution to the newsvendor problem is given by ξ∗ = F−1(p), which is the

Bayes act under this piecewise linear loss function.

Remark 9. The scoring rule given by (5.7) is strictly proper in the quantile setting.

[Cervera & Munoz 1997]

The solution to the newsvendor problem shows that the value that maximizes

EFS(q) is F−1(p), verifying that the score is strictly proper. We note that an equivalent

version of (5.7) called the check (or tick) function has been used in the econometric

literature to verify the quality of quantile regressions (e.g. Koenker & Bassett 1978,

Giacomini & Komunjer 2005).

Interestingly, a linear scoring rule is strictly proper for quantile assessment, whereas

a quadratic scoring rule (involving squared deviations between q and x) is not proper.

In a probability-assessment setting, on the other hand, a quadratic scoring rule is

strictly proper, but a linear scoring rule is not, because it leads to extreme assessed

probabilities of zero or one. This relates to the point made earlier that evaluating

assessments in terms of probabilities is different than evaluating them in terms of

quantiles, and it demonstrates the importance of finding evaluation measures that are

suitable for the particular assessment process that is used.
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5.1.3 Properties

We will now consider some properties of the strictly proper scoring rule S(ξ, x) for

quantile assessments.

Proposition 5.1.3. The scoring rule S(ξ, x) given by (5.6) satisfies the following

properties:

i. Positive affine transformations of S as functions of x are still proper, i.e. aS(ξ, x)+

b is strictly proper whenever a ∈ R+. Moreover, b can be a constant or any func-

tion of x.

ii. If h is bounded then S is bounded above. Moreover, if X has bounded support,

i.e. supp(X) = [v, v̄] then it is bounded below as well. In fact, the following

holds:

h(x)− %(v̄ − v) ≤ S(ξ, x) ≤ h(x),

where % = max{p, 1− p}.

Proof. (i) By (5.4), we have for all π ∈ Π(ξ), Eπ[S(ξ, x)] ≥ Eπ[S(ξ′, x)]⇔ aEπ[S(ξ, x)]+

Eπ[b(x)] ≥ aEπ[S(ξ′, x)] + Eπ[b(x)] ⇔ Eπ[aS(ξ) + b(x)] ≥ Eπ[aS(q′) + b(x)], (ii) The

upper bound follows from the fact that 0 = supS∗(ξ, x), while the lower bound follows

from the decomposition shown earlier in (5.6) �

Property (i) is similar to Remark 1 which provides a wider family of strictly proper

scoring rules through affine transformations. It implies that strict propriety is retained

in the quantile setting for positive affine transformations. Property (ii), on the other

hand, provides bounds for the score whenever the support is bounded. We note that

the bounds are independent of q and are bounded on both sides when h is integrable

with respect to P.

The properties in Proposition 5.1.3 are related to the actual score. From an ex ante

perspective, we might be interested in properties related to the expected score rather

than the actual score. Our first result for the expected score provides a partial ordering
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for certain classes of probability distributions. To avoid complications brought about

by the extra term h(x), we use the following notation:

Sp(ξ, x) = S∗(ξ, x) + h(x) (5.8)

where S∗(ξ, x) = −p(x− ξ)+ − (1− p)(ξ − x)+.

Consider a distribution F and randomize each outcome x further so that the value

of y = x+ z, where z has distribution function H(z) with mean zero. This generates a

function G over y. In this case, we say that a distribution G obtained in this manner is

a mean preserving spread of F through a randomization distribution H. This is mean

preserving since H has mean 0.

Proposition 5.1.4. Let F,G ∈ P and h be a concave function. If G is a mean-

preserving spread of F then the expected scores under truthful reporting of the p-quantile

for these beliefs imply that EFS ≥ EGS.

Proof. Note that the expected score under truthful reporting can be expressed as:

EFS∗ = −(1− p)
∫ F−1(p)

−∞
(F−1(p)− x)dF (x)− p

∫ ∞
F−1(p)

(x− F−1(p))dF (x)

= −(1− p)F−1(p)F (F−1(p)) + (1− p)
∫ F−1(p)

−∞
xdF (x)

−p
[
EF [X]−

∫ F−1(p)

−∞
xdF (x)− F−1(p)(1− F (F−1(p)))

]

= −pEF [X] +
∫ F−1(p)

−∞
xdF (x) (5.9)

Now, since G is a mean-preserving spread of F , EF [X] = EG[X], and the following

property holds: (see Mas-Colell, et. al. 1995)

∫ ∞
−∞

u(x)dF (x) ≥
∫ ∞
−∞

u(x)dG(x)

for all non-decreasing concave functions u. Set u(x) = x1{x ≤ r} + r1{x > r}. And

we get that
∫ F−1(p)
−∞ xdF (x) ≥ ∫ G−1(p)

−∞ xdG(x), which shows that EFS∗ ≥ EGS∗. If h

is concave then EF [h(x)] ≥ EG[h(x)], which means that EFS ≥ EGS. �
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Proposition 5.1.4 shows that given two distribution with the same mean if one

second order stochastically dominates the other then the dominant one will have a

better expected score. In the newsvendor framework, the intuition is that since there

is less dispersion with one distribution, large errors resulting from being too far from

the actual value are less likely in one setting compared to another.

This requirement of a mean-preserving spread however is somewhat restrictive.

We are able to get this ordering condition under several other settings. An example

is the Karlin-Novikoff(1963) condition. Suppose that two assessors report truthfully

and it turns out that they have the same report, a. If F (x) ≤ G(x) for all x < a and

F (x) ≥ G(x) for all x > a, then we still get the same result: EFS∗ ≥ EGS∗. This

follows because, on [−∞, r], F first order stochastically dominates G. Hence,

∫
u(x)dF (x) ≥

∫
u(x)dG(x)

for any increasing function. Now, if we set u(x) = (1− p)(x− r)1{x < r}, we have

−(1− p)
∫ r

−∞
(r − x)dF (x) ≥ −(1− p)

∫ r

−∞
(r − x)dG(x).

Similarly, on the interval (r,∞), G first order stochastically dominates F . Hence, when

u(x) = p(x− r)1{x > r} is chosen. We have

p

∫ ∞
r

(x− r)dG(x) ≥ p
∫ ∞
r

(x− r)dG(x)

−p
∫ ∞
r

(x− r)dG(x) ≤ −p
∫ ∞
r

(x− r)dG(x),

which yields the result.

To provide a more general result, we consider a dilation ordering.

Definition 17. Let X and Y be two random variables. We say that Y is more dispersed

than X in the dilation (or dilatation) sense, denoted by X 6dil Y , if

E[φ(X − µX)] ≤ E[φ(Y − µY )]

for all convex functions φ, provided that these expectations exist. [Shaked & Shantiku-

mar 2007]
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This provides a generalization of comparing variances as means of studying the

dispersion of distributions. Note that if φ(x) = x2 then the condition is equivalent

to a comparison of variances. Unlike the traditional convex order (a.k.a. “increasing

riskiness” condition) which was popularized in economics by Rothschild and Stiglitz

(1970), the dilation order is location invariant, which makes it suitable for comparing

distributions in our setting. For those who are familiar with income economics, the

dilation order is a generalization of the well-known Lorenz order which is used in

studying income inequality.

Our result can then be written as:

Proposition 5.1.5. Let F and G be two distribution functions with finite-means, and

let S be defined as in (5.6). For all p ∈ (0, 1),

EF [S(ξ∗F )] ≥ EG[S(ξ∗G)] ⇔ F ≤dil G. (5.10)

where ξ∗F and ξ∗G is the expected maximizing solution under distributions F and G

respectively.

Proof. Note that from (5.9), we have:

EFS∗ = −pEF [X] +
∫ F−1(p)

−∞
xdF (x).

Next, we note that EF [S(ξ∗F )] ≥ EG[S(ξ∗G)] is equivalent to

−pEF [X] +
∫ F−1(p)

−∞
xdF (x) ≥ −pEG[X] +

∫ G−1(p)

−∞
xdG(x)

∫ F−1(p)

−∞
xdF (x)−

∫ G−1(p)

−∞
xdG(x) ≥ p(EF [X]− EG[X])

∫ p

0
(F−1(u)−G−1(u))du ≥ p(EF [X]− EG[X]).

But the last statement is a necessary and sufficient condition for dilation ordering (see

Corollary 2.1 of Fagiuoli, et al. 1999). �

The main implication of this result is that an assessor who has a less informative

prior distribution on the variable of interest should expect a lower score than a person
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who is more informed. Hence, information gain should be measured in this context

not by changes in the mean or variance but rather improvements in the distribution

with respect to dilation ordering.

Proposition 5.1.6. Given F ∈P, the expected score under truthful reporting satisfies

the following:

lim
p→0

EFSp(F−(p)) = 0

lim
p→1

EFSp(F−(p)) = 0

Proof. Let A and B be the lower and upper support (on R̄) of the distribution F

lim
p→0

ES∗ = lim
p→0
−pE[X] +

∫ F−1(p)

A
xdF (x) = 0 +

∫ A

A
xdF (x) = 0

lim
p→1

ES∗ = lim
p→1
−pE[X] +

∫ F−1(p)

A
xdF (x) = −E[X] +

∫ B

A
xdF (x) = 0 �

Proposition 5.1.6 shows that as we move towards more extreme forecasts the ex-

pected score that an assessor gets for truthful reporting diminishes. This may provide

an incentive for her to be negligent with respect to the effort she puts into the assess-

ment of more extreme values of p. To respond to this, we might scale the score up

for values of p closer to 0 and 1 so that ES maintains a reasonable range of values to

motivate the decision maker.

To illustrate Proposition 5.1.6, Figure 5.1 provides two plots for the expected score

under truthful reporting. The left-hand side refers to plots for the exponential distri-

bution (with λ = 0.25, 0.5, 1, 2, 4), while the right plot refers to a uniform distribution

on the interval (−θ, θ) (with θ = {0.5, 1, 2, 5, 10}. Note that as the variance of the

distribution becomes smaller, the expected scores tend to be closer to 0, and the dis-

crepancy between expected scores for closer values of p become smaller as p approaches

either 0 or 1.
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Figure 5.1: The expected report for truthful reporting in the quantile setting:

an exponential and uniform example.

5.1.4 Multiple Quantiles

There are situations where a single quantile is sufficient for decision-making purposes.

An example is the decision about how many papers to order in the newsvendor problem.

Even in that situation, however, further information about F is needed if the newsven-

dor is considering getting additional information about the demand for papers. More

generally, we are typically interested in more information about X and want to assess

multiple quantiles. Suppose that we want to assess m quantiles ξ1, . . . , ξm for the ran-

dom variable X. For the assessment of ξi, i = 1, . . . ,m, we use the linear scoring rule

in (5.7) with coefficients pi and 1 − pi, where 0 < p1 < · · · < pm < 1. That yields

(ξ,p), where ξ = (ξ1, . . . , ξm) and p = (p1, . . . , pm). Adding the m scores, as Cervera

and Muñoz (1996), and Gneiting and Raftery (2007) do, encourages truthful reporting

[ξi = F−1(pi), i = 1, . . . ,m] for an expert who wants to maximize her expected score.

In our exposition, we assume h(x) is a constant, i.e. h(x) := h, but note that general

results for the h(x) case can be attained with some extra steps.

Proposition 5.1.7. The scoring rule

S(ξ, x) =
m∑

i=1

S(ξi, x) = mh−
m∑

i=1

pi(x− ξi)+ −
m∑

i=1

(1− pi)(ξi − x)+ (5.11)

is strictly proper, with the assessed quantiles ordered as follows: ξ1 < ξ2 < · · · < ξm.

Proof. The additive scoring rule implies separability of the assessments. Therefore,

S(ξ, x) is strictly proper since each S(ξi, x) is strictly proper, and the ordering of the

88



www.manaraa.com

quantiles follows from the ordering of p1, . . . , pm and the assumption that F is strictly

increasing. �

From (5.11), the score attains a maximum value of mh when ξ1 = ξ2 = · · · = ξm =

x, i.e., when all of the assessed quantiles equal the observed value x. Next, we consider

some properties of S(ξ, x). For convenience, we define ξ0 = −∞ and ξm+1 =∞.

Proposition 5.1.8. S(ξ, x) is piecewise linear and concave in x, with

S(ξ, x) = bjx+mh+
j∑

i=1

piξi −
m∑

i=j+1

(1− pi)ξi (5.12)

if ξj ≤ x ≤ ξj+1, j = 0, . . . ,m, where

b0 =
m∑

i=1

(1− pi)

and

bj =
m∑

i=j+1

(1− pi)−
j∑

i=1

pi = m− j −
m∑

i=1

pi = bj−1 − 1

for j = 1, . . . ,m.

Proof. If ξj ≤ x ≤ ξj+1,

m∑

i=1

pi(x− ξi)+ +
m∑

i=1

(1− pi)(ξi − x)+ =
j∑

i=1

pi(x− ξi)+ +
m∑

i=j+1

(1− pi)(ξi − x)+

= −bjx−
j∑

i=1

piξi +
m∑

i=j+1

(1− pi)ξi.

Thus, (5.12) follows from (5.11). S(ξ, x) is piecewise linear in x from (5.12) and concave

because the slopes bj are decreasing in j. �

Proposition 5.1.9. Let k be the smallest integer greater than or equal to b0. Then

S(ξ, x) is maximized at x = ξk, uniquely so if b0 =
∑m

i=1(1− pi)is not an integer, and

S(ξ, ξk) = mh− w(ξ), (5.13)

where

w(ξ) =
k−1∑

i=1

[ i∑

l=1

pl

]
(ξi+1 − ξi) +

m−1∑

i=k

[ m∑

l=i+1

(1− pl)
]
(ξi − ξi−1). (5.14)
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Proof. From Proposition 5.1.8, b0 > 0 and bk = bk−1 − 1 = b0 − k. Thus, bi > (≤)0

for i < (≥)k, and S(ξ, x) is maximized at x = ξk. If b0 =
∑m

i=1(1 − pi) is (is not) an

integer, bk = (>)0 and ξk is not (is) a unique maximum. Letting x = ξk in (5.12) and

rearranging terms yield (5.13) with

w(ξ) =
k−1∑

i=1

pi(ξk − ξi)−
m∑

i=k+1

(1− pi)(ξi − ξk),

from which expanding ξk − ξi and ξi − ξk into terms (ξi+1 − ξi) and (ξi − ξi−1) and

rearranging again gives us (5.14). �

From Propositions 5.1.8 and 5.1.9, we see that the slopes of the piecewise linear,

concave S(ξ, x) can be expressed in terms of sums of left-hand and right-hand cumu-

lative probabilities pi and 1 − pi. Slopes of successive pieces always decrease by one,

which means that arg maxS(ξ, x) can be determined by the initial slope b0, which is

the sum of the m right-hand cumulative probabilities. The maximum score for a given

ξ is equal to the upper bound of mg minus w(ξ) ≥ 0, which represents a penalty for

spreading out the quantiles. The contribution to this penalty of each interval between

adjoining quantiles is the product of the width of the interval and a weight that be-

comes smaller as we move from intervals near the highest score toward intervals in the

lower or upper tail.

Proposition 5.1.10. If k is the smallest integer greater than equal to b0, as in Propo-

sition 5.1.9, and ξj ≤ x ≤ ξj+1, then we can decompose the score and expected score

as follows:

S(ξ, x) = mh(x)− w(ξ)− v(ξ, x) (5.15)

and

EF [S(ξ)] = mh− w(ξ)− EF [v(ξ, x)], (5.16)
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where

v(ξ, x) =





bk−1(ξk − x) +
k−1∑

i=j+1

(ξi − x) = bj(ξj+1 − x) +
k−1∑

i=j+1

bi(ξi+1 − ξi) if j < k

−bk(x− ξk) +
j∑

i=k+1

(x− ξi) = −bj(x− ξj)−
j−1∑

i=k

bi(ξi+1 − ξi) if j ≥ k

(5.17)

Proof. S(ξ, x) = S(ξ, ξk)− [S(ξ, ξk)−S(ξ, x)] = mh−w(ξ)− [S(ξ, ξk)−S(ξ, x)]. From

(5.12), S(ξ, ξk) − S(ξ, x) simplifies to (5.17). This gives us (5.15) and (5.16) follows

directly. �

If x = ξk or if ξk ≤ x ≤ ξk+1 and the slopes are integers so that bk = 0, then

v(ξ, x) = 0. In this case, the only reduction from the maximum score mh(x) is the

penalty w(ξ) ≥ 0 for spreading out the quartiles. Otherwise, the score does not reach

its maximum mh − w(ξ) for the assessed ξ, but is penalized further by an amount

v(ξ, x) > 0. This additional penalty is a function of how far x is from ξk, with a

different weight for each interval between quantiles from x to ξk (including the partial

interval from x to the nearest quantile in the direction of ξk). The contribution to the

penalty of each interval is the product of the width of the interval and a weight that

becomes larger as the intervals are further from ξk and the corresponding slopes get

larger.

Consider an expert who is asked to assess her 0.05, 0.25, 0.50, 0.75, and 0.95 quan-

tiles for X, using the scoring rule in (5.11) with h(x) = 200. Here m = 5, the slopes

b0, . . . , b5 of the segments of S(ξ, x) are 2.5, 1.5, 0.5, −0.5, −1.5, and −2.5, and S(ξ, x)

is maximized at x = ξ3, the median of the expert’s distribution of X. Suppose that dis-

tribution is normal with mean 500 and standard deviation 100, i.e. X ∼ N(500, 1002).

The score S(ξ, x) is shown in Figure 5.2 as a function of x assuming that the expert

reports quantiles based on N(500, 1002) and assuming that she reports quantiles based

on N(500, 502). From (5.14), the lower standard deviation yields a lower value of w(ξ)

because the quantiles are less spread out, leading to narrower intervals between suc-
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Figure 5.2: S(ξ, x) as a function of x for quantiles based on N(500, 1002) and

N(500, 502).

cessive quantiles. That is why the maximum score at x = ξ3 = 500, which equals

1000−w(ξ), is higher for the standard deviation of 50. However, with the less-spread-

out quantiles the slopes get steeper more quickly as we move away from x = 500, and

the score is higher for the standard deviation of 100 if x < 441 or x > 559.

The scoring rule in (5.11) is strictly proper, so not reporting quantiles truthfully

leads to a decrease in the expert’s expected score. What happens if the expert’s distri-

bution of X is N(500, 1002) but she reports quantiles based on a normal distribution

with a different mean or standard deviation? Figure 5.3 shows the expected score as

a function of µ for reports based on N(µ, 1002) and Figure 5.4 shows the expected

score as a function of σ for reports based on N(500, σ2). The expected score appears

to be more sensitive to changes in the mean: basing quantiles on a mean of 450 or 550

instead of 500 results in about the same reduction in expected score as basing quartiles

on a standard deviation of 50 or 175 instead of 100. This provides an indication of

reductions in expected score due to not reporting truthfully.

If the expert does report her quantiles truthfully to maximize her expected score,

as per Proposition 5.1.7, then how will her expected score vary with a change in the

mean or standard deviation of her distribution? A change in the mean shifts all of
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Figure 5.3: Expected score as a function of µ when the expert’s distribution is

N(500, 1002) and reports are based on N(µ, 1002).
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Figure 5.4: Expected score as a function of σ when the expert’s distribution is

N(500, 1002) and reports are based on N(500, σ2).
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the quantiles by the same amount, and the width of the intervals between quantiles

remains unchanged, as does the expected score. As for dispersion, we would expect

the expected score to be lower if her standard deviation increases. As discussed above,

w(ξ) decreases as the dispersion of the expert’s distribution decreases. Similarly, (5.17)

implies that EF [v(ξ, x)] will decrease as the dispersion of F decreases because the quan-

tiles are less spread out and x itself is expected to be less distant from arg maxS(ξ, x).

For the normal example, the expected score for an expert who truthfully reports quan-

tiles based on her N(500, σ2) distribution for X is linear as a function of σ with a

negative slope, −1.24. Thus, as σ increases, the expected score is reduced.

Not all of the details of the normal example generalize to other distributions. For

instance, the linearity of the relationship between EF [S(ξ)] and σ does not hold for all

distributions. The dilation property for a single quantile can however be used in this

setting. For this, we again set h(x) to be a constant say h.

Proposition 5.1.11. If F and G are cdfs of X with finite means, ξF and ξG are

quantiles based on F and G for any fixed p, and S is the scoring rule from (5.11), then

if and only if EF [S(ξF )] ≥ EG[S(ξG)] if and only if F is less dispersed than G in the

dilation ordering sense.

Proof. The expected score under F can be expressed as

EF [S(ξF )] = mh−
m∑

i=1

piEF [X] +
m∑

i=1

∫ F−1(pi)

−∞
xdF (x),

and similarly for G. Thus, EF [S(ξF )] ≥ EG[S(ξG)] is equivalent to
m∑

i=1

(∫ F−1(pi)

−∞
xdF (x)−

∫ G−1(pi)

−∞
xdG(x)

)
≥

m∑

i=1

pi(EF [X]− EG[X])

m∑

i=1

(∫ pi

−∞
[F−1(u)−G−1(u)]du

)
≥

m∑

i=1

pi(EF [X]− EG[X]).

This is a sufficient and necessary condition for F being less dispersed than G in the

dilation ordering sense (Fagiuoli et al. 1999). �

Proposition 5.1.11 shows that our scoring rule for quantiles rewards sharpness in

the sense that an expert whose distribution has less dispersion than the distribution

94



www.manaraa.com

of another expert will have a higher expected score. In other words, a more informed

expert can expect a higher score. This provides an incentive for an expert to obtain

additional information or to do further analysis with existing information in order to

reduce the dispersion of her distribution.

A special case of the use of multiple quantiles in practice is interval forecasts. They

are widely encountered, in part because of their frequent use, along with interval esti-

mates, in statistics. This means that experts are familiar with the notion of interval

forecasts, so a possible assessment method is to assess an interval. If the relevant prob-

abilities are fixed in advance, as in the typical case of a 90% interval that is symmetric

in probability (i.e., has equal tail probabilities of 5%), then this is equivalent to assess-

ing two quantiles (the 0.05 and 0.95 quantiles). Alternatively, the two quantiles can

be assessed separately without mention of an interval, perhaps with additional assess-

ments (e.g., 0.05− 0.50− 0.95 quantiles). Of course, it is also possible to start with a

fixed interval and assess the probability of the interval, which is probability assessment

instead of quantile assessment, but it is more common to fix the probability associated

with the interval and assess the quantiles that are the end points.

An interval forecast is an important special case of the assessment of multiple

quantiles. For an interval forecast using the linear scoring rule in (5.11), m = 2 and

the probability associated with the interval is 1 − α = p2 − p1. The slopes of S(ξ, x)

below, within, and above the interval are b0 = 2 − (p1 + p2), b1 = 1 − (p1 + p2), and

b2 = −(p1 + p2). Here k = 1 + 1{p1 + p2 ≥ 1}. Dunsmore (1968) and Winkler (1972)

consider linear loss functions for interval estimation related to the linear scoring rule

in (5.11).

As noted above, intervals encountered in practice are typically symmetric in prob-

ability, which implies that 0 < p1 < 0.5, p2 = 1− p1, α = 2p1, (b0, b1, b2) = (1, 0,−1),

and k = 1. The scoring rule (5.11) is of the form

S(ξ, x) = 2h− α

2
(ξ2 − ξ1)− (ξ1 − x)+ − (x− ξ2)+. (5.18)

The penalty associated with the width of the interval is w(ξ) = (α/2)(ξ2−ξ1). The
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penalty v(ξ, x) for deviations of x from ξk is ξ1 − x if x < ξ1 (x is below the interval),

zero if ξ1 ≤ x ≤ ξ2 (x is in the interval), and x− ξ2 if x > q2 (x is above the interval).

Thus, the strictly proper nature of S results from a tradeoff between the penalty

associated with the width of the interval and the penalty associated with having x fall

outside the interval. The rule is flat when x falls within the interval because v(ξ, x)

comes into play only if x is outside the interval. The slopes of the piecewise linear

scoring rule are integers, and arg maxS(ξ, x) is not unique; any x ∈ [q1, q2] maximizes

S(ξ, x).

From (5.18), the expected score under truthful reporting for a symmetric interval

with α = 2p can be simplified to

EF [S(ξ)] = 2h−
(∫ ∞

ξ2

xdF (x)−
∫ ξ1

−∞
xdF (x)

)

= 2h− (E∞ξ2 [X]− Eξ1−∞[X]).

Intuitively, the partial expectations in the tails should get more extreme (further apart)

as the dispersion increases, leading to a decrease in expected score. If F is N(µ, σ2),

then

w(ξ) = 2pσ|z|, and

EF [v(ξ,X)] = 2[σ(2π)−1/2 exp(−z2/2)− pσ|z|],

where z = (F−1(p)− µ)/σ. Therefore,

EF [S(ξ)] = 2h−
√

2σ√
π
exp(−z2/2);

the expected score decreases linearly in σ. If F is uniformly distributed on [a, b], then

w(ξ) = p(1− 2p)(b− a), and

EF [v(ξ,X)] = p2(b− a),

so that

EF [S(ξ)] = 2h− p(1− p)(b− a),

which also decreases linearly in the standard deviation, (b− a)/
√

12. For both distri-

butions, the expected score increases as p → 0 for a given standard deviation, which
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might be thought of as a reflection of an increased difficulty in assessing more extreme

quantiles. The same general idea operates separately above and below the interval in

the case of an interval that is asymmetric in terms of probability.

5.2 Monotonic Transformations

One of the ways that the scoring rule in (5.7) can be generalized is through a transfor-

mation on x and ξ. In particular, Gneiting and Raftery (2007) suggest the following

generalization:

S(ξ, x) = ps(ξ) + (s(x)− s(ξ))1{x ≤ ξ}+ h(x), (5.19)

where s is any non-decreasing function. To avoid complications involving non-uniqueness

of the optimal report, we focus on functions s which are strictly increasing on Ω.

The introduction of the function s retains the strict propriety of the score but

changes the behavior of the scoring rule. When s(ξ) = ξ, the rule in (5.19) reduces to

the linear rule.

Remark 10. The scoring rule S given by (5.19) is strictly proper. [Gneiting & Raftery

2007]

As an example, consider the power function defined for z ≥ 0,

s(z) =
1
β

(zβ − 1). (5.20)

When β = 1, we have the linear rule, while as β → 0, we get the log rule, i.e. s(z) = ln z.

For all β, s is strictly increasing. Moreover, for β > 1 it is strictly concave, while for

β < 1 it is strictly convex. Hence, the use of the function s enables us to generate a

wider variety of rules. We shall refer to this function s as the generator of S and the

resulting score as the s-transformed (or simply s) scoring rule.

We can think of the generator s simply as a transformation we apply to both our

assessment and the actual observation. For example, if we are providing an assessment

for a project’s rate of return, s might represent a profit function for the project. This
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provides an assessor the opportunity to step into the shoes of the decision maker and

her score could then be interpreted as her share of the company’s profit. This echoes

the general idea that Savage (1971) had about scoring rules as functions that allow

assessors to have a “share of the business.” A stringent constraint however here is that

s has to be a non-decreasing function, which may not always be realistic.

We can characterize this new generalized scoring rule by looking at the behavior

of the scores for two assessments ξ and ξ′.

Proposition 5.2.1. Let s ∈ C1 be a strictly increasing function, ξ, ξ′ be two reports

such that ξ < ξ′. Report ξ receives a higher score than report ξ′ if and only if the

observed value is less than a unique critical value α ∈ [ξ, ξ′], which is a weighted mean

of the two reports.

Proof. Consider WLOG ξ < ξ′. If x < ξ, then we note that S(ξ, x) ≥ S(ξ′, x) iff

−(1− p)(s(ξ)− s(x)) ≥ −(1− p)(s(ξ′)− s(x))

s(ξ) ≤ s(ξ′).

This is always true since s is increasing. Hence, ξ always gets a better score. Similarly,

if x > ξ′ then ξ′ always gets a better score. Finally, if x ∈ [ξ, ξ′] then ξ attains a better

score than ξ′ iff

p(s(ξ)− s(x)) ≥ (1− p)(s(x)− s(ξ′))

ps(ξ) + (1− p)s(ξ′) ≥ s(x)

x ≤ s[−1](ps(ξ) + (1− p)s(ξ′)).

Since s is continuous and strictly increasing then this inverse is unique and moreover

it lies in the interval [ξ, ξ′]. �

This threshold value α is a quasi-arithmetic mean. For the power example in (5.20),

the threshold value can be computed as follows:

α = s[−1](ps(ξ) + (1− p)s(ξ′)) = (pξc + (1− p)ξ′c)1/c := Mc(ξ, ξ′; p),
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which simply is the weighted mean of degree c with weight p = (p, 1− p). Therefore,

under this transformation, the threshold value satisfies the following properties for

ξ ≤ ξ′:

lim
c→−∞Mc(ξ, ξ′; p) = ξ

lim
c→∞Mc(ξ, ξ′; p) = ξ′

Mc(ξ, ξ′; p) ≤Mc′(ξ, ξ′; p) for c < c′.

with the last equality holding only when ξ = ξ′.

Proposition 5.2.1 paves the way for a characterization for the s-transformed scoring

rule. This means that if the scoring rule gives a better score for a forecast which is based

on the quasi-arithmetic mean threshold generated by s, then it is the s-transformed

scoring rule. For the p-quantile linear rule, the threshold divides the interval [ξ, ξ′]

according to the ratio 1−p
p .

The next proposition demonstrates other properties that the threshold value may

have under different generator functions leading to the notion of comparability between

generators.

Proposition 5.2.2. Under the conditions of the previous proposition, the following

holds:

i. If a > 0 is any constant then the critical values for the scoring rules with gener-

ators s and s′ = as+ b are the same.

ii. Given the generator s, if ξ ≤ τ and ξ′ ≤ τ ′ then α[ξ,ξ′] ≤ α[τ,τ ′] where α[i,j] is the

threshold associated with reports i, j.

iii. Given the generator s, for every fixed ξ, ξ′ and a ∈ [ξ, ξ′], there exists a unique

p such that α[ξ,ξ′] = a.

iv. We say that a function f is (strictly) convex with respect to a monotonic function

g if f(g−1) is (strictly) convex. Then given two scoring rules with generators s

and s′, αs,[ξ,ξ′] ≤ αs′,[ξ,ξ′] for all ξ, ξ′ ∈ R if and only if s is convex with respect

to s′.
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Proof. (i) The critical value is x′ = s
′[−1](ps′(ξ) + (1− p)s′(ξ′)) = s

′[−1](a(ps(ξ) + (1−
p)s(ξ′)) + b) = x, (ii) (ξ ≤ τ, ξ′ ≤ τ ′) ⇒ (ps(ξ) + (1 − p)s(ξ′) ≤ ps(τ) + (1 − p)s(τ ′)).
Then the conclusion follows from the strict monotonicity of s, (iii) This immediately

follows from the fact that for fixed values of ξ and ξ′, a : (ξ, ξ′, p) is a continuous

function from a compact set of the weights p to the closed interval [ξ, ξ′], (iv) By the

convexity of s w.r.t. s′ and Jensen’s Inequality, we have:

φ(ps(ξ) + (1− p)s(ξ′)) ≤ pφ(s(ξ)) + (1− p)φ(s(ξ′)),

where φ := s(s′−1). Then the conclusion follows. �

These results generally follow from the fact that α is a quasi-arithmetic mean

(cf. Bullen, et. al. 1988). Proposition 5.2.2 mentions the following properties: (i)

invariance to affine transformations in s, (ii) monotonicity, (iii) uniqueness in p and (iv)

comparability. The first two represent notions which are to be reasonably expected. In

fact, using affine transformations imply that the scoring rules are essentially equivalent.

The third property related to the uniqueness in p simply comes from the fact that s is

restricted to be a strictly positive function.

The last property talks about the mathematical notion of comparability (in the

sense of Hardy, et. al. 1934). We say that functions of two variables are comparable

when given two values, the order between the functions never changes. For example, we

say that the harmonic, geometric and arithmetic means denoted byH(x, y), G(x, y) and

A(x, y) are comparable in the positive real line since for all x, y, H(x, y) ≤ G(x, y) ≤
A(x, y). Hence, in terms of ordering, the direction of the inequalities does not reverse

for any pair of x, y. Using the requirement of Proposition 5.2.2, it turns out that a

wide class of functions are comparable to the linear generator. Thus, the choice of a

generator asides from a linear generator must have a reasonable motivation and should

consider other factors asides from simple ordering.

Next, we consider another property called sufficiency that may be useful in choosing

a generator. A statistic T is sufficient for a measurable function S(Θ) if the conditional

distribution of S(Θ) given T = t is independent of Θ. For the quantile scoring rule
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S(ξ, x), this means that given the sufficient statistic we can compute the value of S

regardless of whether we know ξ and x.

Proposition 5.2.3. If s(z) = az (or s(z) = a log z) then the signed deviation (ratio)

ξ between the assessment and the observed value is sufficient for S∗. In general, the

signed s-deviation (ratio) ξs together with x is sufficient for S, with x being necessarily

sufficient only through h(x), i.e. ξs is sufficient for S whenever h is not dependent on

x (i.e. it is a constant).

Proof. We can write S∗(ξ, x) = K1(ξ−x) where K1 can take on two possible constant

values depending on the sign of ξ − x for a linear generator. Similarly, S∗(ξ, x) =

K2 log(ξ/x) for a logarithmic generator, with K2 being dependent on whether the

ratio ξ/x is greater than or equal to 1. �

A nice feature of the linear scoring rule is that when h̃(x) is a constant then the

score is completely determined by the deviation of the assessment from the observed

value. This is one reason why the solution obtained by papers looking only at the

errors ξ−x lead to the linear rule (e.g. Giacomini and Komunjer 2005). Moreover, we

extend this result by looking at the ratio ξ/x, which relates to the logarithmic scoring

rule. If we restrict our attention to the space of all s-transformed scoring rules, we

have have the following characterization result.

Proposition 5.2.4. The only continuous generator for which the scoring rule S∗ is

dependent on the deviations ξi−x, is s(z) = az+b with a > 0. Also, the only generator

in R+ for which the scoring rule is dependent on the ratios ξi/x is s(z) = a log z + b

with a > 0. If h is independent of x, then the result also holds for S.

Proof. Sufficiency in terms of the deviations ξ − x implies that the term s(ξ) − s(x)

can be expressed as some function π(ξ − x). First consider the case, ξ ≤ x, we note

that this leads to a modified Pexider functional equation: π(ξ − x) = w(ξ) − w(x),

with w(z) = ps(z). This implies that π(ξ − x) is exactly the same as w(ξ − x) but

translated by some constant (−w(0)). Hence, if we set g(x) = w(x)−w(0), then we have
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g(x−y)+g(y) = g(x). Therefore under the assumption of continuity and monotonically

increasing for s, the general solution for this is g(x) = ax = w(x) + constant⇒ s(x) =

αx+ β. A similar argument can be made for the case when ξ > x. Similarly, the case

for the ratio follows using Cauchy’s logarithmic functional equation. �

Note that the sufficiency of ξ leads us to several things. First, it may provide us

with insights on an appropriate choice for the generator s. In particular, if we want the

sufficient statistic to be determined solely by the deviations from the observed value

then s(z) can be a linear function (i.e. s(z) = az for a > 0). In a similar fashion, if our

decision variables are restricted to the positive half-line, we may want the sufficient

statistic to be determined solely by the ratio of the assessed values to the observed

value. In this case, the function s(z) = a log z, a > 0 satisfies this requirement (since

the unique solution in C1(R+) to the functional equation f(x/y) = f(x)− f(y) is this

function). This may be useful when comparing values over a series of experiments or

periods where the random quantity is non-stationary. For example, the score for an

assessment of 100 and an outcome of 200 is the same as it is for an assessment of 1900

and the outcome of 2000 when a linear rule is used, but not when a logarithmic score

is used.

Another property of potential interest is boundedness. If a scoring rule is used as

an incentive tool for reporting, then it may be reasonable for a decision maker to place

a cap such that the highest and lowest payoffs are restricted to some range. In this

case, it may be desirable to use a transformation which is strictly increasing but also

bounded.

For the linear and logarithmic rule, this is not satisfied since these functions are

unbounded below. However, other rules are not bounded in this fashion. For example,

some of the well-known functions in the area of population dynamics could be used

such as:

Logistic Curve : s(x) = α+
γ

(1 + τ exp(−β(x− µ)))1/τ

Gompertz Curve : s(x) = α+ (γ + α) exp(ζ exp(χx))
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where ζ, χ < 0. The range for both functions is [α, γ + α]. Note that if the support is

bounded, then all functions discussed earlier would apply, e.g. a linear function defined

on this region (or truncated outside this region) would work.
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Chapter 6

Summary and Future Research

6.1 Summary of Results

In this dissertation, we examine new methods for evaluating probabilistic information

from expert opinion using scoring rules. We contribute to the literature and practice

of expert elicitation and verification through (i) the development of two parametric

families of scoring rules that can incorporate non-uniform baseline distributions, (ii)

the creation of a new class of sensitive to distance strictly proper scoring rules and (iii)

the analysis of scoring rules for quantile assessments and their properties.

First, we extend the power and pseudospherical families of scoring rules by allowing

them to incorporate a baseline distribution from which the value of a forecast is mea-

sured. A nice feature of these families is that they provide a continuum of possibilities

and contain as special cases several well-known scoring rules in the literature. They

also have strong connections to two other large areas of research, namely information

theory and utility maximization. We showed that the expected scores under truthful

reporting for these scores correspond to some well-known generalized divergence mea-

sures and are the solutions to two utility maximization problems. These connections

provide an information-theoretic justification and a decision-theoretic motivation for

these new rules.

Next, in cases where the state space has a natural ordering, we noted that sensi-

tivity to distance may play an important role in many decision problems. The ranked

probability score is presently the only one considered in almost all of these applica-

tions. We enrich this class of scoring rules by providing a new algorithm that generates

strictly proper scoring rules that are sensitive to distance. By an appropriate adjust-

ment, we show that the power and pseudospherical families of scoring rules can be

extended to take into account a baseline distribution while maintaining the property
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of sensitivity to distance. These strictly proper scoring rules are the first to incorporate

both baseline distributions and sensitivity to distance.

Finally, we provide a discussion on how forecasts can be evaluated in a quantile

setting, which is another common method of eliciting probabilistic information from

experts. By showing that the scoring rules developed in the probability assessment

setting lose their incentive compatibility property in a quantile setting, we motivate

the need to consider new scoring rules for quantile assessment. In particular, we study

the (piecewise) linear scoring rule and its generalization through positive monotonic

transformations. We also study some of its properties and provide new characteriza-

tions for some of its special and limiting cases. We argue that the knowledge of these

properties can be useful in the selection of an appropriate scoring rule to be used in

practice.

6.2 Future Research

This dissertation has focused on one interesting aspect of probability elicitation and

verification. In particular, its contributions are primarily focused on the topic of scor-

ing rules with some applications and connections outside the scoring rules literature

such as finance and information theory also present.

Though the development and investigation of scoring rules is quite extensive in this

dissertation, several interesting questions still remain. Some of these are old problems

that have not yet been resolved, while others are questions that have risen from this

dissertation.

In the development of weighted scoring rules, we have shown that there is a general

connection between scoring rules, information theory and utility maximization. One

interesting area of investigation would be the application of these concepts in other

areas. For example, we have shown that there is room for such tools to be used in the

context of financial markets. It would be interesting to see how these could be applied

to areas such as marketing or operations where the need to measure information from
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moving from one distribution to another also exists.

In addition, it would be interesting to see how the different rules compare against

each other in various contexts. A comparative analysis of weighted scoring rules similar

to what Bickel (2007) has done would provide interesting insights on instances where

one scoring rule might be preferred over another. In addition, the discovery of new

properties of these scoring rules would be useful when rules are chosen in practice.

In cases where the state space has an ordering, we have argued that sensitivity

to distance may be a useful property for scoring rules. An open problem in this area

has involved the existence of sensitive to distance scoring rules for other definitions

of distance. For example, Murphy (1970) asks whether a sensitive to distance scoring

rule exists for a different notion of distance such as one based on symmetric sums of

probabilities for events centered at the event that is observed. If one exists, questions

such as (1) “Does a complete characterization along the lines of Nau (2007) exist for

these rules?”, (2) “What natural decision-theoretic story can be given to these rules?”,

and (3) “For what applications is this new definition useful?”, and (4) “What other

definitions of distance might also be of interest?”

This is even more complicated when one moves from the univariate case to the

multivariate case. Since it is feasible to discuss the notion of distance between prob-

ability distributions in higher dimensions, the challenge is to find ways to give the

notion of sensitivity to distance a natural interpretation in this context. Winkler and

Jose (2008) mention that this could be very challenging, especially when the different

dimensions are measured using incomparable scales, since value tradeoffs would be

needed to develop an appropriate distance measure.

In terms of quantile assessment, the literature on scoring rules for quantiles is still

very young. An open problem suggested by Cervera and Muñoz (1996) is the existence

of a characterization theorem for scoring rules in this context. The existence of such

a result would have an impact not only on the scoring rules literature but on a wider

class of problems such as quantile regression and estimation theory. With respect to

the research that we have started, it would be interesting to find a way to incorporate
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the notion of a baseline distribution into scoring rules for quantiles.

On a much broader level, one important question that needs further study involves

the practical application of scoring rules in probability assessment. Though the math-

ematical theory has a solid foundation, a question that many practitioners might ask

is how different scoring rules affect the behavior of individuals whose probabilities are

being elicited. Though some experimental work (e.g. Staël von Holstein 1970) has

been done, there is still no general consensus on the practical impact of scoring rules

in elicitation contexts. Are they really useful guides for making probability assess-

ments or are they simply suited for ex post verification? This is also true for quantile

assessment. Further experimental work using scoring rules for these types of elicitation

would be useful.

For both probability and quantile assessments, one interesting research question

is the applicability of scoring rules in the context of sequential assessments. Given

that information on the uncertainty and performance is revealed over time, it would

be interesting to investigate how information gains should be appropriately accounted

for using scoring rules.
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